• Charron, M., and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59 , 923941.

    • Search Google Scholar
    • Export Citation
  • Ford, R., 1994a: Gravity wave radiation from vortex trains in rotating shallow water. J. Fluid Mech., 281 , 81118.

  • Ford, R., 1994b: The response of a rotating ellipse of uniform potential vorticity to gravity wave radiation. Phys. Fluids, 6 , 36943704.

    • Search Google Scholar
    • Export Citation
  • Ford, R., M. E. McIntyre, and W. A. Norton, 2000: Balance and the slow quasimanifold: Some explicit results. J. Atmos. Sci., 57 , 12361254.

    • Search Google Scholar
    • Export Citation
  • Ford, R., M. E. McIntyre, and W. A. Norton, 2002: Reply. J. Atmos. Sci., 59 , 28782882.

  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 .1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29 , 1137.

    • Search Google Scholar
    • Export Citation
  • Kim, Y-J., S. D. Eckermann, and H-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmos.–Ocean, 41 , 6598.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and P. B. Dorian, 1988: A mesoscale gravity wave event observed during CCOPE. Part III: Wave environment and probable source mechanisms. Mon. Wea. Rev., 116 , 25702592.

    • Search Google Scholar
    • Export Citation
  • Lighthill, J. M., 1952: On sound generated aerodynamically. I. General theory. Proc. Roy. Soc. London, 211A , 564587.

  • McWilliams, J. C., and P. R. Gent, 1980: Intermediate models of planetary circulations in the atmosphere and ocean. J. Atmos. Sci., 37 , 16571678.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., and N. M. Gavrilov, 1995: The nonlinear mechanism of gravity wave generation by meteorological motions in the atmosphere. J. Atmos. Terr. Phys., 57 , 12211231.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52 , 36953716.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and V. Zeitlin, 2002: Internal gravity wave emission from a pancake vortex: An example of wave–vortex interaction in strongly stratified flows. Phys. Fluids, 14 , 12591268.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2005: Gravity waves excited by jets: Propagation versus generation. Geophys. Res. Lett., 32 .L18802, doi:10.1029/2005GL023730.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., H. Teitelbaum, and V. Zeitlin, 2003: Inertia gravity wave generation by the tropospheric midlatitude jet as given by the Fronts and Atlantic Storm-Track Experiment radio soundings. J. Geophys. Res., 108 .4686, doi:10.1029/2003JD003535.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., D. J. Muraki, and C. Snyder, 2005: A baroclinic instability that couples balanced motions and gravity waves. J. Atmos. Sci., 62 , 15451559.

    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., and M. Griffiths, 1996: Stratospheric inertia–gravity waves generated in a numerical model of frontogenesis. Part II: Wave sources, generation mechanisms, and momentum fluxes. Quart. J. Roy. Meteor. Soc., 122 , 11751195.

    • Search Google Scholar
    • Export Citation
  • Reznik, G. M., V. Zeitlin, and M. Ben Jelloul, 2001: Nonlinear theory of geostrophic adjustment. Part I: Rotating shallow-water model. J. Fluid Mech., 445 , 93120.

    • Search Google Scholar
    • Export Citation
  • Saujani, S., and T. G. Shepherd, 2002: Comments on “Balance and the slow quasimanifold: Some explicit results.”. J. Atmos. Sci., 59 , 28742877.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., W. C. Skamarock, and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50 , 31943212.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and S. E. Koch, 1987: The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rev., 115 , 721729.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and F. Zhang, 2007: Sensitivity of mesoscale gravity waves to the baroclinicity of jet-front systems. Mon. Wea. Rev., 135 , 670688.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., T. W. N. Haine, and P. L. Read, 2005: On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear. J. Fluid Mech., 528 , 122.

    • Search Google Scholar
    • Export Citation
  • Zeitlin, V., G. M. Reznik, and M. Ben Jelloul, 2003: Nonlinear theory of geostrophic adjustment. Part 2: Two-layer and continuously stratified primitive equations. J. Fluid Mech., 491 , 207228.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci., 61 , 440457.

  • Zhang, F., S. E. Koch, C. A. Davis, and M. L. Kaplan, 2000: A survey of unbalanced flow diagnostics and their application. Adv. Atmos. Sci., 17 , 165183.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., S. E. Koch, C. A. Davis, and M. L. Kaplan, 2001: Wavelet analysis and the governing dynamics of a large amplitude mesoscale gravity wave event along the east coast of the United States. Quart. J. Roy. Meteor. Soc., 127 , 22092245.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 6 6 6

On the Forcing of Inertia–Gravity Waves by Synoptic-Scale Flows

View More View Less
  • 1 Laboratoire de Météorologie Dynamique, IPSL, Ecole Normale Supérieure, Paris, France
  • | 2 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
Restricted access

Abstract

Studies on the spontaneous emission of gravity waves from jets, both observational and numerical, have emphasized that excitation of gravity waves occurred preferentially near regions of imbalance. Yet a quantitative relation between the several large-scale diagnostics of imbalance and the excited waves is still lacking.

The purpose of the present note is to investigate one possible way to relate quantitatively the gravity waves to diagnostics of the large-scale flow that is exciting them. Scaling arguments are used to determine how the large-scale flow may provide a forcing on the right-hand side of a wave equation describing the linear dynamics of the excited waves. The residual of the nonlinear balance equation plays an important role in this forcing.

Corresponding author address: Riwal Plougonven, Laboratoire de Météorologie Dynamique, IPSL, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris CEDEX 05, France. Email: riwal.plougonven@polytechnique.org

Abstract

Studies on the spontaneous emission of gravity waves from jets, both observational and numerical, have emphasized that excitation of gravity waves occurred preferentially near regions of imbalance. Yet a quantitative relation between the several large-scale diagnostics of imbalance and the excited waves is still lacking.

The purpose of the present note is to investigate one possible way to relate quantitatively the gravity waves to diagnostics of the large-scale flow that is exciting them. Scaling arguments are used to determine how the large-scale flow may provide a forcing on the right-hand side of a wave equation describing the linear dynamics of the excited waves. The residual of the nonlinear balance equation plays an important role in this forcing.

Corresponding author address: Riwal Plougonven, Laboratoire de Météorologie Dynamique, IPSL, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris CEDEX 05, France. Email: riwal.plougonven@polytechnique.org

Save