• André, J. C., and L. Mahrt, 1982: The nocturnal surface inversion and influence of clear-air radiative cooling. J. Atmos. Sci., 39 , 864878.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105 , 221252.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60 , 25492555.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118 , 247272.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38 , 283290.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low-level jet. Mon. Wea. Rev., 96 , 833850.

  • Businger, J. A., 1973: Turbulent transfer in the atmospheric surface layer. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc, 67–100.

    • Search Google Scholar
    • Export Citation
  • Chu, C. R., M. B. Parlange, G. G. Katul, and J. D. Albertson, 1996: Probability density functions of turbulent velocity and temperature in the atmospheric surface layer. Water Resour. Res., 32 , 16811688.

    • Search Google Scholar
    • Export Citation
  • Conangla, L., and J. Cuxart, 2006: On the turbulence in the upper part of the low-level jet: An experimental and numerical study. Bound.-Layer Meteor., 118 , 379400.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and Coauthors, 2000a: Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES-98): A report. Bound.-Layer Meteor., 96 , 337370.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., P. Bougeault, and J-L. Redelsperger, 2000b: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126 , 130.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118 , 273303.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., M. A. Jiménez, and D. Martínez, 2007: Nocturnal katabatic and mesobeta basin flows on a midlatitude island. Mon. Wea. Rev., 135 , 918932.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18 , 495527.

  • Derbyshire, S. H., 1990: Nieuwstadt’s stable boundary layer revisited. Quart. J. Roy. Meteor. Soc., 116 , 127158.

  • Gal-Chen, T., and R. C. J. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys., 17 , 209228.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., and R. A. Brost, 1981: Radiative cooling effects within and above the nocturnal boundary layer. J. Atmos. Sci., 38 , 27302746.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., M. Sharan, R. T. McNider, and M. P. Singh, 1998: Study of radiative and turbulent processes in the stable boundary layer under weak wind conditions. J. Atmos. Sci., 55 , 954960.

    • Search Google Scholar
    • Export Citation
  • Ha, K-J., and L. Mahrt, 2003: Radiative and turbulent fluxes in the nocturnal boundary layer. Tellus, 55A , 317327.

  • Jiménez, M. A., and J. Cuxart, 2005: Large-eddy simulations of the Stable Boundary Layer using the standard Kolmogorov theory: Range of applicability. Bound.-Layer Meteor., 115 , 241261.

    • Search Google Scholar
    • Export Citation
  • Jiménez, M. A., and J. Cuxart, 2006: Study of the probability density functions from a large-eddy simulation of a stably stratified case. Bound.-Layer Meteor., 118 , 401420.

    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., and Coauthors, 1998: The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16 , 90109.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., X. S. Li, C. J. Zhu, and B. B. Stankov, 1988: The stably stratified boundary layer over the Great Plains. I. Mean and turbulence structure. Bound.-Layer Meteor., 42 , 95121.

    • Search Google Scholar
    • Export Citation
  • Lipps, F. B., and R. S. Hemler, 1982: A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci., 39 , 21922210.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., R. C. Heald, D. H. Lenschow, B. B. Stankov, and I. B. Troen, 1979: An observational study of the structure of the nocturnal boundary layer. Bound.-Layer Meteor., 17 , 247264.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., J. Sun, W. Blumen, T. Delany, and S. Oncley, 1998: Nocturnal boundary-layer regimes. Bound.-Layer Meteor., 88 , 255278.

  • Morcrette, J-J., 1990: Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon. Wea. Rev., 118 , 847873.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83 , 555581.

    • Search Google Scholar
    • Export Citation
  • Räisänen, P., 1996: The effect of vertical resolution on clear-sky radiation calculations: Tests with two schemes. Tellus, 48A , 403423.

    • Search Google Scholar
    • Export Citation
  • Smedman, A. S., M. Tjernström, and U. Högström, 1993: Analysis of the turbulence structure of a marine low-level jet. Bound.-Layer Meteor., 66 , 105126.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Tjemkes, S. A., and P. G. Duynkerke, 1989: The nocturnal boundary layer: Model calculations compared with observations. J. Appl. Meteor., 28 , 161175.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., R. J. Ronda, A. F. Moene, H. A. R. De Bruin, and A. A. M. Holtslag, 2002: Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: A bulk model. J. Atmos. Sci., 59 , 942958.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36 , 13631376.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and R. A. Brost, 1984: Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41 , 102112.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 1 1 1

Mixing Processes in a Nocturnal Low-Level Jet: An LES Study

View More View Less
  • 1 Grup de Meteorologia, Departmento de Física, Universitat de les Illes Balears, Palma de Mallorca, Spain
Restricted access

Abstract

A steady-state low-level jet observed in the Stable Atmospheric Boundary Layer Experiment in Spain-1998 (SABLES-98) campaign is simulated using a large-eddy simulation model. The radiation is taken into account since its contribution to the budget of the tendency of temperature is as important as the contribution of the turbulence in the surface layer. The resulting regime is a two-layer flow separated by a change of the temperature gradient at the level of maximum speed. The upper part has turbulence originated by shear production extending up to 3 times the height of wind maximum and of the same order of magnitude as in the layer below. The jet nose is seen by the model as a decoupling layer, and the use of passive scalars allows for the inspection of the amount of transport across it, which is very small. The lower layer is very sensitive to the surface boundary conditions, but the principal patterns in the upper layer do not change significantly. The runs are compared to the observations through mean profiles, time series, and probability density functions.

Corresponding author address: Joan Cuxart Rodamilans, Universitat de les Illes Balears, Dpt. Física, Cra. Valldemossa, km. 7.5, 07122, Palma de Mallorca, Spain. Email: joan.cuxart@uib.es

Abstract

A steady-state low-level jet observed in the Stable Atmospheric Boundary Layer Experiment in Spain-1998 (SABLES-98) campaign is simulated using a large-eddy simulation model. The radiation is taken into account since its contribution to the budget of the tendency of temperature is as important as the contribution of the turbulence in the surface layer. The resulting regime is a two-layer flow separated by a change of the temperature gradient at the level of maximum speed. The upper part has turbulence originated by shear production extending up to 3 times the height of wind maximum and of the same order of magnitude as in the layer below. The jet nose is seen by the model as a decoupling layer, and the use of passive scalars allows for the inspection of the amount of transport across it, which is very small. The lower layer is very sensitive to the surface boundary conditions, but the principal patterns in the upper layer do not change significantly. The runs are compared to the observations through mean profiles, time series, and probability density functions.

Corresponding author address: Joan Cuxart Rodamilans, Universitat de les Illes Balears, Dpt. Física, Cra. Valldemossa, km. 7.5, 07122, Palma de Mallorca, Spain. Email: joan.cuxart@uib.es

Save