• Biello, J. A., and A. J. Majda, 2005: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci., 62 , 16941721.

  • Biello, J. A., and A. J. Majda, 2006: Modulating synoptic scale convective activity and boundary layer dissipation in the IPESD models of the Madden–Julian oscillation. Dyn. Atmos. Oceans, 42 , 152215.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and A. H. Sobel, 2003: The Gill model and the weak temperature gradient approximation. J. Atmos. Sci., 60 , 451460.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58 , 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60 , 847864.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. W. Moncrieff, 2001: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127 , 445468.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Leibmann, 1994: Organization of convection within the Madden–Julian oscillation. J. Geophys. Res., 99 , 80738084.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Houze Jr., R. A., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57 , 30583089.

    • Search Google Scholar
    • Export Citation
  • Inness, P. M., J. M. Slingo, S. J. Woolnough, R. B. Neale, and V. D. Pope, 2001: Organization of tropical convection in a GCM with varying vertical resolution: Implications for the simulation of the Madden–Julian oscillation. Climate Dyn., 17 , 777793.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and X. Lin, 1997: Episodic trade wind regimes over the western Pacific warm pool. J. Atmos. Sci., 54 , 20202034.

  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62 , 27902809.

    • Search Google Scholar
    • Export Citation
  • Lin, J-L., M. Zhang, and B. Mapes, 2005: Zonal momentum budget of the Madden–Julian oscillation: The source and strength of equivalent linear damping. J. Atmos. Sci., 62 , 21722188.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 695715.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the Tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50 day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Majda, A. J., and R. Klein, 2003: Systematic multiscale models for the Tropics. J. Atmos. Sci., 60 , 393408.

  • Majda, A. J., and J. A. Biello, 2004: A multi-scale model for tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 101 , 47364741.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., B. Khouider, G. N. Kiladis, K. H. Straub, and M. G. Shefter, 2004: A model for convectively coupled tropical waves: Nonlinearity, rotation, and comparison with observations. J. Atmos. Sci., 61 , 21882205.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11 , 23872403.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44B , 2543.

  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61 , 15211538.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and E. Klinker, 1997: Organized convective systems in the tropical western Pacific as a process in general circulation models: A TOGA COARE case study. Quart. J. Roy. Meteor. Soc., 123 , 805827.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66 , 823839.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., P. Inness, R. Neale, S. Woolnough, and G-Y. Yang, 2003: Scale interactions on diurnal to seasonal time scales and their relevance to model systematic errors. Ann. Geophys. Italy, 46 , 139155.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., 2003: Propagation and the vertical structure of the Madden–Julian oscillation. Mon. Wea. Rev., 131 , 30183037.

  • Straub, K. H., and G. N. Kiladis, 2003: Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon. Wea. Rev., 131 , 945960.

    • Search Google Scholar
    • Export Citation
  • Tung, W-W., and M. Yanai, 2002: Convective momentum transport observed during the TOGA COARE IOP. Part II: Case studies. J. Atmos. Sci., 59 , 25352549.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 2000: Tropical Pacific sea surface temperature anomalies, El Nino, and equatorial westerly wind events. J. Climate, 13 , 18141830.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2005: Theory. Intraseasonal Variability in the Atmosphere-Ocean System, W. K. Lau and D. E. Waliser, Eds., Springer-Verlag, 307–360.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. N. Kiladis, and P. D. Shardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54 , 14451461.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., B. Chen, and W-W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57 , 23742396.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43 .RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., and S. P. Anderson, 2003: Sensitivity of intraseasonal perturbations in SST to the structure of the MJO. J. Atmos. Sci., 60 , 21962207.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 6 6 6

Meridional Momentum Flux and Superrotation in the Multiscale IPESD MJO Model

View More View Less
  • 1 Department of Mathematics, University of California, Davis, Davis, California
  • | 2 Courant Institute of Mathematical Sciences, Center for Atmosphere–Ocean Science, New York University, New York, New York
  • | 3 Mesoscale and Microscale Meteorology Division, NCAR,* Boulder, Colorado
Restricted access

Abstract

The derivation of the meridional momentum flux arising from a multiscale horizontal velocity field in the intraseasonal, planetary, equatorial synoptic-scale dynamics (IPESD) multiscale models of the equatorial troposphere is presented. It is shown that, because of the balance dynamics on the synoptic scales, the synoptic-scale component of the meridional momentum flux convergence must always vanish at the equator. Plausible Madden–Julian oscillation (MJO) models are presented along with their planetary-scale meridional momentum fluxes. These models are driven by synoptic-scale heating fluctuations that have vertical and meridional tilts. Irrespective of the sign of the synoptic-scale meridional momentum flux (direction of the tilts) in each of the four MJO examples, the zonal and vertical mean meridional momentum flux convergence from the planetary scales always drives westerly winds near the equator: this is the superrotation characteristic of actual MJOs. The concluding discussion demonstrates that equatorial superrotation occurs when the planetary flow due to the vertical upscale momentum flux from synoptic scales reinforces the horizontally convergent flow due to planetary-scale mean heating.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Joseph A. Biello, Department of Mathematics, University of California, Davis, Davis, CA 95616. Email: biello@math.ucdavis.edu

Abstract

The derivation of the meridional momentum flux arising from a multiscale horizontal velocity field in the intraseasonal, planetary, equatorial synoptic-scale dynamics (IPESD) multiscale models of the equatorial troposphere is presented. It is shown that, because of the balance dynamics on the synoptic scales, the synoptic-scale component of the meridional momentum flux convergence must always vanish at the equator. Plausible Madden–Julian oscillation (MJO) models are presented along with their planetary-scale meridional momentum fluxes. These models are driven by synoptic-scale heating fluctuations that have vertical and meridional tilts. Irrespective of the sign of the synoptic-scale meridional momentum flux (direction of the tilts) in each of the four MJO examples, the zonal and vertical mean meridional momentum flux convergence from the planetary scales always drives westerly winds near the equator: this is the superrotation characteristic of actual MJOs. The concluding discussion demonstrates that equatorial superrotation occurs when the planetary flow due to the vertical upscale momentum flux from synoptic scales reinforces the horizontally convergent flow due to planetary-scale mean heating.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Joseph A. Biello, Department of Mathematics, University of California, Davis, Davis, CA 95616. Email: biello@math.ucdavis.edu

Save