• Banfield, D., B. J. Conrath, M. D. Smith, P. R. Christensen, and R. John Wilson, 2003: Forced waves in the Martian atmosphere from MGS TES nadir data. Icarus, 161 , 319345.

    • Search Google Scholar
    • Export Citation
  • Banfield, D., B. J. Conrath, P. J. Gierasch, R. John Wilson, and M. D. Smith, 2004: Traveling waves in the Martian atmosphere from MGS TES nadir data. Icarus, 170 , 365403.

    • Search Google Scholar
    • Export Citation
  • Barnes, J. R., 1980: Time spectral analysis of midlatitude disturbances in the Martian atmosphere. J. Atmos. Sci., 37 , 20022015.

  • Barnes, J. R., 1981: Midlatitude disturbances in the Martian atmosphere: A second Mars year. J. Atmos. Sci., 38 , 225234.

  • Barnes, J. R., 1984: Linear baroclinic instability in the Martian atmosphere. J. Atmos. Sci., 41 , 15361550.

  • Barnes, J. R., 1990: Possible effects of breaking gravity waves on the circulation of the middle atmosphere of Mars. J. Geophys. Res., 95 , 14011421.

    • Search Google Scholar
    • Export Citation
  • Beer, R., 2006: TES on the Aura Mission: Scientific objectives, measurements, and analysis overview. IEEE Trans. Geosci. Remote Sens., 44 , 11021105.

    • Search Google Scholar
    • Export Citation
  • Beer, R., T. A. Glavich, and D. M. Rider, 2001: Tropospheric Emission Spectrometer for the Earth Observing System’s Aura satellite. Appl. Opt., 40 , 23562367.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and T. G. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40 , 164184.

  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28 , 10871095.

  • Cho, J. Y. N., and E. Lindborg, 2001: Horizontal velocity structure functions in the upper troposphere and lower stratosphere. 1. Observations. J. Geophys. Res., 106 , 1022310232.

    • Search Google Scholar
    • Export Citation
  • Christensen, P. R., and Coauthors, 2001: Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res., 106 , 2382323872.

    • Search Google Scholar
    • Export Citation
  • Clancy, R. T., B. J. Sandor, M. J. Wolff, P. R. Christensen, M. D. Smith, J. C. Pearl, B. J. Conrath, and R. J. Wilson, 2000: An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and inter-annual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res., 105 , 95539571.

    • Search Google Scholar
    • Export Citation
  • Conrath, B. J., J. C. Pearl, M. D. Smith, W. C. Maguire, P. R. Christensen, S. Dason, and M. S. Kaelberer, 2000: Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: Atmospheric temperatures during aerobraking and science phasing. J. Geophys. Res., 105 , 95099520.

    • Search Google Scholar
    • Export Citation
  • Gage, K. S., and G. D. Nastrom, 1986: Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP. J. Atmos. Sci., 43 , 729740.

    • Search Google Scholar
    • Export Citation
  • Hinson, D. P., and R. J. Wilson, 2002: Transient eddies in the southern hemisphere of Mars. Geophys. Res. Lett., 29 .1154, doi:10.1029/2001GL014103.

    • Search Google Scholar
    • Export Citation
  • Jaquin, F., P. Gierasch, and R. Kahn, 1986: The vertical structure of limb hazes in the Martian atmosphere. Icarus, 68 , 442461.

  • Jasperson, W. H., G. D. Nastrom, and D. C. Fritts, 1990: Further study of terrain effects on the mesoscale spectrum of atmospheric motions. J. Atmos. Sci., 47 , 979987.

    • Search Google Scholar
    • Export Citation
  • Kahn, R., 1984: The spatial and seasonal distribution of Martian clouds and some meteorological implications. J. Geophys. Res., 89 , 66716688.

    • Search Google Scholar
    • Export Citation
  • Kieffer, H. H., B. M. Jakosky, and C. W. Snyder, 1992: The planet Mars: From antiquity to the present. Mars, H. H. Kieffer et al., Eds., University of Arizona Press, 1–33.

    • Search Google Scholar
    • Export Citation
  • Kitamura, Y., and Y. Matsuda, 2006: The k−3 H and k−5/3 H energy spectra in stratified turbulence. Geophys. Res. Lett., 33 .L05809, doi:10.1029/2005GL024996.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere stratosphere mesosphere GCM. J. Atmos. Sci., 58 , 329348.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1989: Two-dimensional turbulence generated by energy sources at two scales. J. Atmos. Sci., 46 , 20262030.

  • Lilly, D. K., and P. F. Lester, 1974: Waves and turbulence in the stratosphere. J. Atmos. Sci., 31 , 800812.

  • Lindborg, E., 2005: The effect of rotation on the mesoscale energy cascade in the free atmosphere. Geophys. Res. Lett., 32 .L01809, doi:10.1029/2004GL021319.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42 , 950960.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., D. C. Fritts, and K. S. Gage, 1987: An investigation of terrain effects on the mesoscale spectrum of atmospheric motions. J. Atmos. Sci., 44 , 30873096.

    • Search Google Scholar
    • Export Citation
  • Pearl, J. C., M. D. Smith, B. J. Conrath, J. L. Bandfield, and P. R. Christensen, 2001: Observations of Martian ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer: The first Martian year. J. Geophys. Res., 106 , 1232512338.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 1987: A spectral view of nonlinear fluxes and stationary–transient interaction in the atmosphere. J. Atmos. Sci., 44 , 11661179.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132 , 30193032.

  • Smith, M. D., 2004: Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus, 167 , 148165.

  • Toigo, A. D., M. I. Richardson, S. P. Ewald, and P. J. Gierasch, 2003: Numerical simulation of Martian dust devils. J. Geophys. Res., 108 .5047, doi:10.1029/2002JE002002.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and W. W. Orlando, 2003: The k−3 and k−5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci., 60 , 824835.

    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9 , 575578.

  • Yuan, L., and K. Hamilton, 1994: Equilibrium dynamics in a forced-dissipative f-plane shallow-water system. J. Fluid Mech., 280 , 369394.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 0 0 0

Mesoscale Spectra of Mars’s Atmosphere Derived from MGS TES Infrared Radiances

View More View Less
  • 1 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
  • | 2 IP Development and Management Division, Hitachi, Ltd., Tokyo, Japan
  • | 3 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan
Restricted access

Abstract

Wavenumber spectra of the atmospheric potential energy of Mars at mesoscales (wavelengths of 64–957 km) were obtained as a function of latitude, season, and Martian year using infrared radiance data obtained by the Thermal Emission Spectrometer (TES) onboard the Mars Global Surveyor (MGS) spacecraft. Spectral slopes tend to be flatter at smaller scales, and the slopes are usually flatter than −1 near small-scale ends. Near large-scale ends, the spectra sometimes show prominent steepening with slopes from −2 to −3. The power peaks in the high latitudes in winter and equinoxes, suggesting that eddies are generated preferentially in baroclinic zones. The seasonal variation at each latitude band, on the other hand, tends to be obscured by large interannual variability. An enhancement in the power was observed around the storm tracks in the Southern Hemisphere. Spectra of the terrestrial stratosphere were also obtained with a similar method from data taken by the Aura satellite and compared to the results for Mars.

Corresponding author address: Takeshi Imamura, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan. Email: ima@isas.jaxa.jp

Abstract

Wavenumber spectra of the atmospheric potential energy of Mars at mesoscales (wavelengths of 64–957 km) were obtained as a function of latitude, season, and Martian year using infrared radiance data obtained by the Thermal Emission Spectrometer (TES) onboard the Mars Global Surveyor (MGS) spacecraft. Spectral slopes tend to be flatter at smaller scales, and the slopes are usually flatter than −1 near small-scale ends. Near large-scale ends, the spectra sometimes show prominent steepening with slopes from −2 to −3. The power peaks in the high latitudes in winter and equinoxes, suggesting that eddies are generated preferentially in baroclinic zones. The seasonal variation at each latitude band, on the other hand, tends to be obscured by large interannual variability. An enhancement in the power was observed around the storm tracks in the Southern Hemisphere. Spectra of the terrestrial stratosphere were also obtained with a similar method from data taken by the Aura satellite and compared to the results for Mars.

Corresponding author address: Takeshi Imamura, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan. Email: ima@isas.jaxa.jp

Save