• Andrejczuk, M., W. W. Grabowski, S. P. Malinowski, and P. K. Smolarkiewicz, 2004: Numerical simulation of cloud–clear air interfacial mixing. J. Atmos. Sci., 61 , 17261739.

    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., W. W. Grabowski, S. P. Malinowski, and P. K. Smolarkiewicz, 2006: Numerical simulation of cloud–clear air interfacial mixing: Effects on cloud microphysics. J. Atmos. Sci., 63 , 32043225.

    • Search Google Scholar
    • Export Citation
  • Baker, B. A., 1992: Turbulent entrainment and mixing in clouds: A new observational approach. J. Atmos. Sci., 49 , 387404.

  • Baker, M. B., and J. Latham, 1979: The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds. J. Atmos. Sci., 36 , 16121615.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., R. G. Corbin, and J. Latham, 1980: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing. Quart. J. Roy. Meteor. Soc., 106 , 581598.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., R. E. Breidenthal, T. W. Choularton, and J. Latham, 1984: The effects of turbulent mixing in clouds. J. Atmos. Sci., 41 , 299304.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32 , 626641.

  • Bower, K. N., and T. W. Choularton, 1988: The effects of entrainment on the growth of droplets in continental cumulus clouds. Quart. J. Roy. Meteor. Soc., 114 , 14111434.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., 1991: Parameterization of the condensation process: A theoretical approach. J. Atmos. Sci., 48 , 264282.

  • Brenguier, J. L., 1993: Observations of cloud microstructure at the centimeter scale. J. Appl. Meteor., 32 , 783793.

  • Brenguier, J. L., and L. Chaumat, 2001: Droplet spectra broadening in cumulus clouds. Part I: Broadening in adiabatic cores. J. Atmos. Sci., 58 , 628641.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., T. Bourrianne, A. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Wechsler, 1998: Improvements of the droplet size distribution measurements with the Fast FSSP (Forward Scattering Spectrometer Probe). J. Atmos. Oceanic Technol., 15 , 10771090.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., H. Pawlowska, L. Schüller, R. Preusker, J. Fischer, and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57 , 803821.

    • Search Google Scholar
    • Export Citation
  • Burnet, F., and J. L. Brenguier, 2002: Comparison between standard and modified Forward Scattering Spectrometer Probes during the Small Cumulus Microphysics Study. J. Atmos. Oceanic Technol., 19 , 15161531.

    • Search Google Scholar
    • Export Citation
  • Chaumat, L., and J. L. Brenguier, 2001: Droplet spectra broadening in cumulus clouds. Part II: Microscale droplet concentration heterogeneities. J. Atmos. Sci., 58 , 642654.

    • Search Google Scholar
    • Export Citation
  • Chosson, F., J-L. Brenguier, and L. Schüller, 2007: Entrainment mixing and radiative transfer simulation in boundary layer clouds. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46 , 13011311.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., G. Frick, S. P. Malinowsky, J-L. Brenguier, and F. Burnet, 2005: Holes and entrainment in stratocumulus. J. Atmos. Sci., 62 , 443459.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1993: Cumulus entrainment, fine-scale mixing and buoyancy reversal. Quart. J. Roy. Meteor. Soc., 119 , 935956.

  • Grabowski, W. W., 2006: Indirect impact of atmospheric aerosols in idealized simulations of convective–radiative quasi equilibrium. J. Climate, 19 , 46644682.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Pawlowska, 1993: Entrainment and mixing in clouds: The Paluch mixing diagram revisited. J. Appl. Meteor., 32 , 17671773.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16 , 527610.

  • Hill, T. A., and T. W. Choularton, 1985: An airbone study of the microphysical structure of cumulus clouds. Quart. J. Roy. Meteor. Soc., 111 , 517544.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., and M. B. Baker, 1989: A simple model of droplet spectral evolution during turbulent mixing. J. Atmos. Sci., 46 , 28122829.

    • Search Google Scholar
    • Export Citation
  • Kerstein, A. R., 1988: Linear eddy modeling of turbulent scalar transport and mixing. Comb. Sci. Technol., 60 , 391421.

  • Krueger, S. K., C-W. Su, and P. A. McMurtry, 1997: Modeling entrainment and finescale mixing in cumulus clouds. J. Atmos. Sci., 54 , 26972712.

    • Search Google Scholar
    • Export Citation
  • Latham, J., and R. L. Reed, 1977: Laboratory studies of the effects of mixing on the evolution of cloud droplet spectra. Quart. J. Roy. Meteor. Soc., 103 , 297306.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and W. A. Cooper, 1990: Performance of some airborne thermometers in clouds. J. Atmos. Oceanic Technol., 7 , 480494.

  • Malinowski, S. P., I. Zawadzki, and P. Banat, 1998: Laboratory observations of cloud–clear air mixing at small scales. J. Atmos. Oceanic Technol., 15 , 10601065.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., and A. P. Siebesma, 2002: A multiparcel model for shallow cumulus convection. J. Atmos. Sci., 59 , 16551668.

  • Paluch, I. R., 1979: The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36 , 24672478.

  • Paluch, I. R., 1986: Mixing and the cloud droplet size spectrum: Generalizations from the CCOPE data. J. Atmos. Sci., 43 , 19841993.

  • Paluch, I. R., and C. A. Knight, 1984: Mixing and the evolution of cloud droplet size spectra in a vigorous continental cumulus. J. Atmos. Sci., 41 , 18011815.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and D. G. Baumgardner, 1989: Entrainment and fine-scale mixing in a continental convective cloud. J. Atmos. Sci., 46 , 261278.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2d ed. Kluwer Academic, 954 pp.

  • Schüller, L., J. L. Brenguier, and H. Pawlowska, 2003: Retrieval of microphysical, geometrical, and radiative properties of marine stratocumulus from remote sensing. J. Geophys. Res., 108 .8631, doi:10.1029/2002JD002680.

    • Search Google Scholar
    • Export Citation
  • Schüller, L., R. Bennartz, J. Fischer, and J-L. Brenguier, 2005: An algorithm for the retrieval of droplet number concentration and geometrical thickness of stratiform marine boundary layer clouds applied to MODIS radiometric observations. J. Appl. Meteor., 44 , 2838.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1978: Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci., 35 , 21232132.

  • Stevens, B., and Coauthors, 2003: Dynamics and chemistry of marine stratocumulus—DYCOMS II. Bull. Amer. Meteor. Soc., 84 , 579593.

  • Su, C. W., S. K. Krueger, P. A. McMurtry, and P. H. Austin, 1998: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds. Atmos. Res., 47–48 , 4158.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., M. D. Petters, J. R. Snider, B. Stevens, W. Tahnk, M. Wetzel, L. Russell, and F. Burnet, 2005: Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact. J. Geophys. Res., 110 .D08203, doi:10.1029/2004JD005116.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34 , 11491152.

  • Twomey, S., and J. Warner, 1967: Comparison of measurements of cloud droplets and cloud nuclei. J. Atmos. Sci., 24 , 702703.

  • Warner, J., 1973: Microstructure of cumulus cloud. Part IV: The effect on the droplet spectrum of mixing between cloud and environment. J. Atmos. Sci., 30 , 256261.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 422 224 15
PDF Downloads 324 167 10

Observational Study of the Entrainment-Mixing Process in Warm Convective Clouds

Frédéric BurnetMétéo-France/CNRS, GAME/CNRM, Toulouse, France

Search for other papers by Frédéric Burnet in
Current site
Google Scholar
PubMed
Close
and
Jean-Louis BrenguierMétéo-France/CNRS, GAME/CNRM, Toulouse, France

Search for other papers by Jean-Louis Brenguier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Thermodynamical and microphysical measurements collected in convective clouds are examined within the frame of the homogeneous/inhomogeneous mixing concept, to determine how entrainment-mixing processes affect cloud droplets, their number concentration, and their mean size. The three selected case studies—one stratocumulus layer and two cumulus clouds—exhibit very different values of the cloud updraft intensity, of the adiabatic droplet mean volume diameter, and of the saturation deficit in the environment, all three parameters that are expected to govern the microphysical response to entrainmentmixing. The results confirm that the observed microphysical features are sensitive to the droplet response time to evaporation and to the turbulent homogenization time scale, as suggested by the inhomogeneous mixing concept. They also reveal that an instrumental artifact due to the heterogeneous spatial droplet distribution may be partly responsible for the observed heterogeneous mixing features. The challenge remains, however, to understand why spatially homogeneous cloud volumes larger than the instrument resolution scale (10 m) are so rarely observed. The analysis of the buoyancy of the cloud and clear air mixtures suggests that dynamical sorting could also be efficient for the selection, among all possible mixing scenarios, of those that minimize the local buoyancy production.

Corresponding author address: Frédéric Burnet, Météo-France, CNRM/GMEI, 42 av. Coriolis, 31057 Toulouse CEDEX 01, France. Email: frederic.burnet@meteo.fr

Abstract

Thermodynamical and microphysical measurements collected in convective clouds are examined within the frame of the homogeneous/inhomogeneous mixing concept, to determine how entrainment-mixing processes affect cloud droplets, their number concentration, and their mean size. The three selected case studies—one stratocumulus layer and two cumulus clouds—exhibit very different values of the cloud updraft intensity, of the adiabatic droplet mean volume diameter, and of the saturation deficit in the environment, all three parameters that are expected to govern the microphysical response to entrainmentmixing. The results confirm that the observed microphysical features are sensitive to the droplet response time to evaporation and to the turbulent homogenization time scale, as suggested by the inhomogeneous mixing concept. They also reveal that an instrumental artifact due to the heterogeneous spatial droplet distribution may be partly responsible for the observed heterogeneous mixing features. The challenge remains, however, to understand why spatially homogeneous cloud volumes larger than the instrument resolution scale (10 m) are so rarely observed. The analysis of the buoyancy of the cloud and clear air mixtures suggests that dynamical sorting could also be efficient for the selection, among all possible mixing scenarios, of those that minimize the local buoyancy production.

Corresponding author address: Frédéric Burnet, Météo-France, CNRM/GMEI, 42 av. Coriolis, 31057 Toulouse CEDEX 01, France. Email: frederic.burnet@meteo.fr

Save