• Arakawa, A., 2004: The cumulus parameterization problem: Past, present and future. J. Climate, 17 , 24932525.

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677692.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipition over the tropical oceans. J. Climate, 17 , 15171528.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44 , 23242340.

  • Emanuel, K. A., 1993: The effect of convective response time on WISHE modes. J. Atmos. Sci., 50 , 17631775.

  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120 , 11111143.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64 , 19591976.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., A. J. Majda, and O. M. Pauluis, 2004: Large-scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit. Commun. Math. Sci., 2 , 591626.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63 , 25482566.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2007: A gray-radiation aquaplanet moist GCM. Part II: Energy transports in altered climates. J. Atmos. Sci., 64 , 16801693.

    • Search Google Scholar
    • Export Citation
  • Garner, S. T., D. M. W. Frierson, I. M. Held, O. M. Pauluis, and G. K. Vallis, 2007: Resolving convection in a global hypohydrostatic model. J. Atmos. Sci., 64 , 20612075.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulations. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Grabowski, W. W., and M. W. Moncrieff, 2001: Large-scale organization of tropical deep convection in two-dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127 , 445468.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of two-day equatorial waves. J. Atmos. Sci., 61 , 27072721.

  • Hayashi, Y., 1982: Space-time spectral analysis and its application to atmospheric waves. J. Meteor. Soc. Japan, 60 , 156171.

  • Held, I. M., M. Zhao, and B. Wyman, 2007: Dynamic radiative–convective equilibria using GCM column physics. J. Atmos. Sci., 64 , 228238.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006a: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63 , 13081323.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006b: Model multi-cloud parameterizations for convectively coupled waves: Detailed nonlinear wave evolution. Dyn. Atmos. Oceans, 42 , 5980.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006c: Multicloud convective parameterizations with crude vertical structure. Theor. Comput. Fluid Dyn., 20 , 351375.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2007: A simple multicloud parameterization for convectively coupled tropical waves. Part II: Nonlinear simulations. J. Atmos. Sci., 64 , 381400.

    • Search Google Scholar
    • Export Citation
  • Lee, M-I., I-S. Kang, J-K. Kim, and B. E. Mapes, 2001: Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J. Geophys. Res., 106 , 1421914233.

    • Search Google Scholar
    • Export Citation
  • Lee, M-L., I-S. Kang, and B. E. Mapes, 2003: Influence of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81 , 963992.

    • Search Google Scholar
    • Export Citation
  • Lin, J., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19 , 26652690.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave-CISK in the Tropics. J. Atmos. Sci., 31 , 156179.

  • Majda, A. J., and M. Shefter, 2001: Models of stratiform instability and convectively coupled waves. J. Atmos. Sci., 58 , 15671584.

  • Majda, A. J., B. Khouider, G. N. Kiladis, K. H. Straub, and M. G. Shefter, 2004: A model for convectively coupled tropical waves: Nonlinearity, rotation-, and comparison with observations. J. Atmos. Sci., 61 , 21882205.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57 , 15151535.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115 , 312.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and J-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden-Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51 , 18761894.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57 , 17411766.

  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44 , 23412348.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1993: Dynamics and energy balance of the Hadley circulation and tropical precipitation zones: Significance of the distribution of evaporation. J. Atmos. Sci., 50 , 18741887.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58 , 28072819.

  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2003: Large-scale waves interacting with deep convection in idealized mesoscale model simulations. Tellus, 55 , 4560.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59 , 3053.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60 , 16551668.

    • Search Google Scholar
    • Export Citation
  • Tian, B., and V. Ramanathan, 2003: A simple moist tropical atmosphere model: The role of cloud-radiative forcing. J. Climate, 16 , 20862092.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30–60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66 , 883901.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., D. A. Randall, and B. E. Mapes, 2007: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci., 64 , 12101229.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84 , 3350.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45 , 20512065.

  • Wang, B., 2005: Theory. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer-Praxis, 307–360.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. Chen, 1989: On the zonal-scale selection and vertical structure of equatorial intraseasonal waves. Quart. J. Roy. Meteor. Soc., 115 , 13011323.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47 , 397413.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., and J. D. Neelin, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part II: Numerical results. J. Atmos. Sci., 51 , 18951914.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 181 87 6
PDF Downloads 147 59 1

Convectively Coupled Kelvin Waves in an Idealized Moist General Circulation Model

Dargan M. W. FriersonUniversity of Chicago, Chicago, Illinois

Search for other papers by Dargan M. W. Frierson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The dynamics of convectively coupled Kelvin waves and their dependence on convection scheme parameters are studied within a simplified moist general circulation model. The model consists of the primitive equations on the sphere over zonally symmetric aquaplanet, slab mixed layer ocean boundary conditions, and idealized physical parameterizations including gray radiative transfer and a simplified Betts–Miller convection scheme. This framework allows the authors to study the dependence of Kelvin waves on quantities such as the gross moist stability in a clean manner.

A control simulation with the model produces convectively coupled Kelvin waves that are remarkably persistent and dominate the variability within the Tropics. These waves propagate with an equivalent depth of ≈40 m. Linear regression analysis with respect to a Kelvin-filtered time series shows that the waves are driven by evaporation–wind feedback and have structures broadly consistent with theoretical predictions for Kelvin waves.

Next, the determination of the speed and structure of the Kelvin waves is studied by examining the response of the waves to changes in convection scheme parameters. When the convective relaxation time is lengthened, the waves are damped and eventually are completely eliminated. The propagation speed additionally increases with longer relaxation time. Then changes to a convection scheme parameter that essentially controls the fraction of convective versus large-scale precipitation are examined. When some large-scale precipitation occurs, the waves increase in strength, propagate more slowly, and move to larger scales. However, when mostly large-scale precipitation occurs, the Kelvin wave disappears, and the Tropics are dominated by tropical storm–like variability. The decrease in speed is related here to the gross moist stability of the atmosphere, which is reduced with increased large-scale precipitation.

Corresponding author address: Dargan M. W. Frierson, 5734 S. Ellis Avenue, Chicago, IL 60637. Email: frierson@geosci.uchicago.edu

Abstract

The dynamics of convectively coupled Kelvin waves and their dependence on convection scheme parameters are studied within a simplified moist general circulation model. The model consists of the primitive equations on the sphere over zonally symmetric aquaplanet, slab mixed layer ocean boundary conditions, and idealized physical parameterizations including gray radiative transfer and a simplified Betts–Miller convection scheme. This framework allows the authors to study the dependence of Kelvin waves on quantities such as the gross moist stability in a clean manner.

A control simulation with the model produces convectively coupled Kelvin waves that are remarkably persistent and dominate the variability within the Tropics. These waves propagate with an equivalent depth of ≈40 m. Linear regression analysis with respect to a Kelvin-filtered time series shows that the waves are driven by evaporation–wind feedback and have structures broadly consistent with theoretical predictions for Kelvin waves.

Next, the determination of the speed and structure of the Kelvin waves is studied by examining the response of the waves to changes in convection scheme parameters. When the convective relaxation time is lengthened, the waves are damped and eventually are completely eliminated. The propagation speed additionally increases with longer relaxation time. Then changes to a convection scheme parameter that essentially controls the fraction of convective versus large-scale precipitation are examined. When some large-scale precipitation occurs, the waves increase in strength, propagate more slowly, and move to larger scales. However, when mostly large-scale precipitation occurs, the Kelvin wave disappears, and the Tropics are dominated by tropical storm–like variability. The decrease in speed is related here to the gross moist stability of the atmosphere, which is reduced with increased large-scale precipitation.

Corresponding author address: Dargan M. W. Frierson, 5734 S. Ellis Avenue, Chicago, IL 60637. Email: frierson@geosci.uchicago.edu

Save