• Biello, J. A., and A. J. Majda, 2005: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci., 62 , 16941721.

  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50 , 29222939.

  • Byers, H. R., and R. R. Braham, 1949: The thunderstorm project. U.S. Weather Bureau Rep., Washington, DC, 287 pp. [NTIS PB234515.].

  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53 , 13801409.

    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., B. Strahl, and J. Schrage, 2002: 2–3-day convective variability in the tropical western Pacific. Mon. Wea. Rev., 130 , 529548.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54 , 23732386.

    • Search Google Scholar
    • Export Citation
  • Fujiyoshi, Y., and B. Geng, 1995: Dual doppler radar observation of a tropical rainband developed from two convective clouds. J. Meteor. Soc. Japan, 73 , 471490.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55 , 32833298.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58 , 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61 , 19401952.

  • Grabowski, W. W., and M. Moncrieff, 2001: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127 , 445468.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. Moncrieff, 2002: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations: Effect of interactive radiation. Quart. J. Roy. Meteor. Soc., 128 , 23492375.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., and D. G. Golder, 1997: United mechanisms for the generation of low- and high-frequency tropical waves. Part I: Control experiments with moist convective adjustment. J. Atmos. Sci., 54 , 12621276.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y-Y., and A. Sumi, 1986: The 20–30-day oscillations simulated in an “aqua planet” model. J. Meteor. Soc. Japan, 64 , 451467.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105 , 15401567.

  • Houze Jr., R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Houze Jr., R. A., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys. Space Phys., 19 , 541576.

  • Houze Jr., R. A., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57 , 30583089.

    • Search Google Scholar
    • Export Citation
  • Innes, P. M., J. M. Slingo, S. J. Woolnough, R. B. Neale, and V. D. Pope, 2001: Organization of tropical convection in a GCM with varying vertical resolution: Implications for the simulation of the Madden–Julian Oscillation. Climate Dyn., 17 , 777793.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14 , 780793.

  • Khairoutdinov, M., and D. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate Model: Preliminary results. Geophys. Res. Lett., 28 , 36173620.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., D. Randall, and C. DeMott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62 , 21362154.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31 .L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62 , 27902809.

    • Search Google Scholar
    • Export Citation
  • K-1 Model Developers, 2004: K-1 coupled GCM (MIROC) description. Tech. Rep. 1, Center for Climate System Research, University of Tokyo, Tokyo, Japan, 34 pp.

  • Leary, C. A., and R. A. Houze Jr., 1979: The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci., 36 , 437457.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Madden, R. A., and P. R. Julian, 2005: Historical perspective. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K.-M. Lau and D. E. Waliser, Eds., Springer-Praxis, 1–18.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., B. Khouider, G. N. Kiladis, K. H. Straub, and M. G. Shefter, 2004: A model for convectively coupled tropical waves: Nonlinearity, rotation, and comparison with observations. J. Atmos. Sci., 61 , 21882205.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61 , 15211538.

    • Search Google Scholar
    • Export Citation
  • Mori, K., 1992: Internal structure and time evolution of a cloud cluster in the western tropical Pacific region observed by Keifu Maru. J. Meteor. Soc. Japan, 70 , 11111123.

    • Search Google Scholar
    • Export Citation
  • Mori, K., 1995: Equatorial convection observed by the research vessel Keifu Maru during the TOGA COARE IOP, November 1992. J. Meteor. Soc. Japan, 73 , 491508.

    • Search Google Scholar
    • Export Citation
  • Nakajima, K., E. Toyoda, M. Ishiwatari, S. Takehiro, and Y-Y. Hayashi, 2004: Initial development of tropical precipitation patterns in response to a local warm SST area: An aqua-planet ensemble study. J. Meteor. Soc. Japan, 82 , 14831504.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1986: Mean features of 30–60 day variations as inferred from 8-year OLR data. J. Meteor. Soc. Japan, 64 , 777786.

  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66 , 823839.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parameterizations. I: The proposal. Atmos. Sci. Lett., 1 , 101107.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., and Y-Y. Hayashi, 1991: Behavior of cumulus activity and the structures of circulations in an “aqua planet” model. Part I: The structure of the super clusters. J. Meteor. Soc. Japan, 69 , 541561.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi, 1997: Description of CCSR/NIES atmospheric general circulation model. CGER’s Supercomputer, Monogr. Rep., Vol. 3, National Institute for Environmental Studies, 1–48.

  • Oouchi, K., 1999: Hierarchical organization of super cloud cluster caused by WISHE, convectively induced gravity waves and cold pool. J. Meteor. Soc. Japan, 77 , 907927.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., and M. Yamasaki, 2001: An MJO-like gravity wave and superclusters simulated in a two-dimensional cumulus-scale-resolving model. J. Meteor. Soc. Japan, 79 , 201218.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61 , 21052132.

  • Satoh, M., 2002: Conservative scheme for the compressible nonhydrostatic models with the horizontally explicit and vertically implicit time integration scheme. Mon. Wea. Rev., 130 , 12271245.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., 2003: Conservative scheme for a compressible nonhydrostatic model with moist processes. Mon. Wea. Rev., 131 , 10331050.

  • Satoh, M., H. Tomita, H. Miura, S. Iga, and T. Nasuno, 2005: Development of a global cloud-resolving model—A multi-scale structure of tropical convections. J. Earth Sim., 3 , 1119.

    • Search Google Scholar
    • Export Citation
  • Satoh, S., A. Kinoshita, and H. Uyeda, 1995: Doppler radar observations on the structure and characteristics of tropical clouds during the TOGA-COARE IOP in Manus, Papua New Guinea: Dual-Doppler analysis of mesoscale convective systems composing a cloud cluster. J. Meteor. Soc. Japan, 73 , 443459.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., P. M. Innes, and K. R. Sperber, 2005: Modeling. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K.-M. Lau and D. E. Waliser, Eds., Springer-Praxis, 361–388.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59 , 3053.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003a: Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon. Wea. Rev., 131 , 945960.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003b: Extratropical forcing of convectively coupled Kelvin waves during Austral winter. J. Atmos. Sci., 60 , 526543.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003c: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60 , 16551668.

    • Search Google Scholar
    • Export Citation
  • Takahashi, N., and H. Uyeda, 1995: Doppler radar observation of the structure and characteristics of tropical clouds during the TOGA-COARE IOP in Manus, Papua New Guinea—Three case studies on November 23 and December 16, 1992. J. Meteor. Soc. Japan, 73 , 427442.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994a: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72 , 433449.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y., 1994b: Large-scale cloud disturbances associated with equatorial waves. Part II: Westward-propagating inertio-gravity waves. J. Meteor. Soc. Japan, 72 , 451465.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y., and M. Murakami, 1991: The structure of super cloud clusters observed in 1–20 June 1986 and their relationship to easterly waves. J. Meteor. Soc. Japan, 69 , 105125.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., K-M. Lau, and C-H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124 , 18921913.

  • Takayabu, Y. N., T. Iguchi, M. Kachi, A. Shibata, and H. Kanazawa, 1999: Abrupt termination of the 1997–98 El Ninõ in response to a Madden–Julian oscillation. Nature, 402 , 279282.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34 , 357400.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., H. Miura, S. Iga, T. Nasuno, and M. Satoh, 2005: A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32 .L08805, doi:10.1029/2005GL022459.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58 , 529545.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., D. Randall, and B. Mapes, 2007: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci., 64 , 12101229.

    • Search Google Scholar
    • Export Citation
  • Tung, W-W., and M. Yanai, 2002: Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J. Atmos. Sci., 59 , 18571871.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, and J-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56 , 333358.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45 , 20512065.

  • Wang, B., 2005: Theory. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K.-M. Lau and D. E. Waliser, Eds., Springer-Praxis, 307–360.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47 , 397413.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2001: The organization of tropical convection by intraseasonal sea surface temperature anomalies. Quart. J. Roy. Meteor. Soc., 127 , 887907.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2004: The diurnal cycle of convection and atmospheric tides in an aquaplanet GCM. J. Atmos. Sci., 61 , 25592573.

    • Search Google Scholar
    • Export Citation
  • Yamasaki, M., 1975: A numerical experiment of the interaction between cumulus convection and larger-scale motion. Pap. Meteor. Geophys., 26 , 6391.

    • Search Google Scholar
    • Export Citation
  • Yamasaki, M., 1983: A further study of the tropical cyclone without parameterizing the effects of cumulus convection. Pap. Meteor. Geophys., 34 , 221260.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., B. Chen, and W-W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57 , 23742396.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., B. Hoskins, and J. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60 , 16371654.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43 .RG2003, doi:10.1029/2004RG000158.

  • Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8 , 799814.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105 , 15681589.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., R. J. Meitin, and M. A. LeMone, 1981: Mesoscale motion fields associated with a slowly moving GATE convective band. J. Atmos. Sci., 38 , 17251750.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 31 0
PDF Downloads 42 19 1

Multiscale Organization of Convection Simulated with Explicit Cloud Processes on an Aquaplanet

Tomoe NasunoFrontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan

Search for other papers by Tomoe Nasuno in
Current site
Google Scholar
PubMed
Close
,
Hirofumi TomitaFrontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan

Search for other papers by Hirofumi Tomita in
Current site
Google Scholar
PubMed
Close
,
Shinichi IgaFrontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan

Search for other papers by Shinichi Iga in
Current site
Google Scholar
PubMed
Close
,
Hiroaki MiuraFrontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan

Search for other papers by Hiroaki Miura in
Current site
Google Scholar
PubMed
Close
, and
Masaki SatohFrontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kangawa, and Center for Climate System Research, University of Tokyo, Kashiwa, Chiba, Japan

Search for other papers by Masaki Satoh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigated the multiscale organization of tropical convection on an aquaplanet in a model experiment with a horizontal mesh size of 3.5 km (for a 10-day simulation) and 7 km (for a 40-day simulation). The numerical experiment used the nonhydrostatic icosahedral atmospheric model (NICAM) with explicit cloud physics.

The simulation realistically reproduced multiscale cloud systems: eastward-propagating super cloud clusters (SCCs) contained westward-propagating cloud clusters (CCs). SCCs (CCs) had zonal sizes of several thousand (hundred) kilometers; typical propagation speed was 17 (10) m s−1. Smaller convective structures such as mesoscale cloud systems (MCs) of O(10 km) and cloud-scale elements (<10 km) were reproduced. A squall-type cluster with high cloud top (z > 16 km) of O(100 km) area was also reproduced.

Planetary-scale equatorial waves (with wavelengths of 10 000 and 40 000 km) had a major influence on the eastward propagation of the simulated SCC; destabilization east of the SCC facilitated generation of new CCs at the eastern end of the SCC. Large-scale divergence fields associated with the waves enhanced the growth of deep clouds in the CCs. A case study of a typical SCC showed that the primary mechanism forcing westward propagation varies with the life stages of the CCs or with vertical profiles of zonal wind. Cold pools and synoptic-scale waves both affected CC organization. Cloud-scale elements systematically formed along the edges of cold pools to sustain simulated MCs. The location, movement, and duration of the MCs varied with the large-scale conditions.

Corresponding author address: Dr. Tomoe Nasuno, Yokohama Institute for Earth Sciences, Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa, 236-0001, Japan. Email: nasuno@jamstec.go.jp

Abstract

This study investigated the multiscale organization of tropical convection on an aquaplanet in a model experiment with a horizontal mesh size of 3.5 km (for a 10-day simulation) and 7 km (for a 40-day simulation). The numerical experiment used the nonhydrostatic icosahedral atmospheric model (NICAM) with explicit cloud physics.

The simulation realistically reproduced multiscale cloud systems: eastward-propagating super cloud clusters (SCCs) contained westward-propagating cloud clusters (CCs). SCCs (CCs) had zonal sizes of several thousand (hundred) kilometers; typical propagation speed was 17 (10) m s−1. Smaller convective structures such as mesoscale cloud systems (MCs) of O(10 km) and cloud-scale elements (<10 km) were reproduced. A squall-type cluster with high cloud top (z > 16 km) of O(100 km) area was also reproduced.

Planetary-scale equatorial waves (with wavelengths of 10 000 and 40 000 km) had a major influence on the eastward propagation of the simulated SCC; destabilization east of the SCC facilitated generation of new CCs at the eastern end of the SCC. Large-scale divergence fields associated with the waves enhanced the growth of deep clouds in the CCs. A case study of a typical SCC showed that the primary mechanism forcing westward propagation varies with the life stages of the CCs or with vertical profiles of zonal wind. Cold pools and synoptic-scale waves both affected CC organization. Cloud-scale elements systematically formed along the edges of cold pools to sustain simulated MCs. The location, movement, and duration of the MCs varied with the large-scale conditions.

Corresponding author address: Dr. Tomoe Nasuno, Yokohama Institute for Earth Sciences, Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa, 236-0001, Japan. Email: nasuno@jamstec.go.jp

Save