• Ackerman, A. S., , M. P. Kirkpatrick, , D. E. Stevens, , and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect climate forcing. Nature, 432 , 10141017.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33 , 851864.

  • Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33 , 193206.

  • Berry, E. X., , and R. L. Reinhardt, 1973: Modeling of condensation and collection within clouds. University of Nevada, Desert Research Institute Tech. Rep. Physical Sciences Publication 16, 96 pp.

  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55 , 22842293.

  • Brenguier, J-L., , and W. W. Grabowski, 1993: Cumulus entrainment and cloud droplet spectra: A numerical model within a two-dimensional dynamical framework. J. Atmos. Sci., 50 , 120136.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., , H. Zhang, , and P. J. Jonker, 1995: Microphysical and turbulent structure of nocturnal stratocumulus as observed during ASTEX. J. Atmos. Sci., 52 , 27632777.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , W. R. Cotton, , S. M. Kreidenweis, , and J. T. Davis, 1999: The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56 , 41004117.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51 , 249280.

  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55 , 32833298.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1999: A parameterization of cloud microphysics for long-term cloud-resolving modeling of tropical convection. Atmos. Res., 52 , 1741.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58 , 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: Impact of cloud microphysics on convective–radiative quasi equilibrium revealed by Cloud-Resolving Convection Parameterization. J. Climate, 16 , 34633475.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2006a: Indirect impact of atmospheric aerosols in idealized simulations of convective–radiative quasi equilibrium. J. Climate, 19 , 46644682.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2006b: Impact of explicit atmosphere–ocean coupling on MJO-like coherent structures in idealized aquaplanet simulations. J. Atmos. Sci., 63 , 22892306.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and P. K. Smolarkiewicz, 1999: CRCP: A cloud resolving convection parameterization for modeling the tropical convecting atmosphere. Physica D, 133 , 171178.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., , and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6 , 243248.

  • Hall, W. D., 1980: A detailed microphysical model within a two-dimensional framework: Model description and preliminary results. J. Atmos. Sci., 37 , 24862507.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., , and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128 , 229243.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR community climate system model: Preliminary results. Geophys. Res. Lett., 28 , 36173620.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , D. A. Randall, , and C. DeMott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a super-parameterization of physical processes. J. Atmos. Sci., 62 , 21362154.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., , and J. A. Curry, 1999: A simple analytical model of aerosol properties with account for hygroscopic growth. 1: Equilibrium size spectra and cloud condensation nuclei activity spectra. J. Geophys. Res., 104 , 21752184.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., , and J. A. Curry, 2006: Aerosol size spectra and CCN activity spectra: Reconciling the lognormal, algebraic, and power laws. J. Geophys. Res., 111 .D12202, doi:10.1029/2005JD006532.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., , and F. W. Murray, 1976: Ice-bearing cumulus cloud evolution: Numerical simulation and general comparison against observations. J. Appl. Meteor., 15 , 747762.

    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S. G., , W. A. Cooper, , and A. M. Blyth, 2005: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131 , 195220.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , P. H. Daum, , and S. S. Yum, 2006: Analytical expression for the relative dispersion of the cloud droplet size distribution. Geophys. Res. Lett., 33 .L02810, doi:10.1029/2005GL024052.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5 , 715737.

  • Long, A. B., 1974: Solutions to the droplet collection equation for polynomial kernals. J. Atmos. Sci., 31 , 10401052.

  • Martin, G. M., , D. W. Johnson, , and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51 , 18231842.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., , R. L. Walko, , J. Y. Harrington, , and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45 , 339.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62 , 30513064.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , J. A. Curry, , and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62 , 16651677.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparison with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110 , 783820.

    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., , and J-L. Brenguier, 2000: Microphysical properties of stratocumulus clouds during ACE-2. Tellus, 52B , 868887.

  • Pawlowska, H., , W. W. Grabowski, , and J-L. Brenguier, 2006: Observations of the width of cloud droplet spectra in stratocumulus. Geophys. Res. Lett., 33 .L19810, doi:10.1029/2006GL026841.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Reisin, T. G., , Y. Y. Yin, , and S. Tzivion, 1998: Development of giant drops and high-reflectivity cores in Hawaiian clouds: Numerical simulations using a kinematic model with detailed microphysics. Atmos. Res., 45 , 275297.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., , R. M. Rasmussen, , and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 forecast model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., , and Y. Liu, 2003: Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration. J. Climate, 16 , 34763481.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., , and Y. Liu, 2005: A smaller global estimate of the second indirect aerosol effect. Geophys. Res. Lett., 32 .L05708, doi:10.1029/2004GL021922.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43 , 182195.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., , and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and self-collection. Atmos. Res., 59–60 , 265281.

    • Search Google Scholar
    • Export Citation
  • Simmel, M., , T. Trautmann, , and G. Tetzlaff, 2002: Numerical solution of the stochastic collection equation comparison of the linear discrete method with other methods. Atmos. Res., 61 , 135148.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. J. Comput. Phys., 54 , 325362.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., , and L. G. Margolin, 1998: MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys., 140 , 459480.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18 , 237273.

  • Su, C-W., , S. K. Krueger, , P. A. McMurtry, , and P. H. Austin, 1998: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds. Atmos. Res., 47–48 , 4158.

    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., , W. W. Grabowski, , and H. T. Ochs III, 1998: Simple two-dimensional kinematic framework designed to test warm rain microphysics models. Atmos. Res., 45 , 299326.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., , H. Miura, , S. Iga, , T. Nasuno, , and M. Satoh, 2005: A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32 .L08805, doi:10.1029/2005GL022459.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8 , 12511256.

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34 , 11491152.

  • Wacker, U., , and A. Seifert, 2001: Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description. Atmos. Res., 58 , 1939.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005a: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62 , 30113033.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005b: Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. J. Atmos. Sci., 62 , 30343050.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 203 203 16
PDF Downloads 197 197 16

Comparison of Bulk and Bin Warm-Rain Microphysics Models Using a Kinematic Framework

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

This paper discusses the development and testing of a bulk warm-rain microphysics model that is capable of addressing the impact of atmospheric aerosols on ice-free clouds. Similarly to previous two-moment bulk schemes, this model predicts the mixing ratios and number concentrations of cloud droplets and drizzle/raindrops. The key elements of the model are the relatively sophisticated cloud droplet activation scheme and a comprehensive treatment of the collision–coalescence mechanism. For the latter, three previously published schemes are selected and tested, with a detailed (bin) microphysics model providing the benchmark. The unique aspect of these tests is that they are performed using a two-dimensional prescribed-flow (kinematic) framework, where both advective transport and gravitational sedimentation are included. Two quasi-idealized test cases are used, the first mimicking a single large eddy in a stratocumulus-topped boundary layer and the second representing a single shallow convective cloud. These types of clouds are thought to be the key in the indirect aerosol effect on climate. Two different aerosol loadings are considered for each case, corresponding to either pristine or polluted environments. In general, all three collision–coalescence schemes seem to capture key features of the bin model simulations (e.g., cloud depth, droplet number concentration, cloud water path, effective radius, precipitation rate, etc.) for the polluted and pristine environments, but there are detailed differences. Two of the collision–coalescence schemes require specification of the width of the cloud droplet spectrum, and model results show significant sensitivity to the specification of the width parameter. Sensitivity tests indicate that a one-moment version of the bulk model for drizzle/rain, which predicts rain/drizzle mixing ratio but not number concentration, produces significant errors relative to the bin model.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Hugh Morrison, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. Email: morrison@ucar.edu

Abstract

This paper discusses the development and testing of a bulk warm-rain microphysics model that is capable of addressing the impact of atmospheric aerosols on ice-free clouds. Similarly to previous two-moment bulk schemes, this model predicts the mixing ratios and number concentrations of cloud droplets and drizzle/raindrops. The key elements of the model are the relatively sophisticated cloud droplet activation scheme and a comprehensive treatment of the collision–coalescence mechanism. For the latter, three previously published schemes are selected and tested, with a detailed (bin) microphysics model providing the benchmark. The unique aspect of these tests is that they are performed using a two-dimensional prescribed-flow (kinematic) framework, where both advective transport and gravitational sedimentation are included. Two quasi-idealized test cases are used, the first mimicking a single large eddy in a stratocumulus-topped boundary layer and the second representing a single shallow convective cloud. These types of clouds are thought to be the key in the indirect aerosol effect on climate. Two different aerosol loadings are considered for each case, corresponding to either pristine or polluted environments. In general, all three collision–coalescence schemes seem to capture key features of the bin model simulations (e.g., cloud depth, droplet number concentration, cloud water path, effective radius, precipitation rate, etc.) for the polluted and pristine environments, but there are detailed differences. Two of the collision–coalescence schemes require specification of the width of the cloud droplet spectrum, and model results show significant sensitivity to the specification of the width parameter. Sensitivity tests indicate that a one-moment version of the bulk model for drizzle/rain, which predicts rain/drizzle mixing ratio but not number concentration, produces significant errors relative to the bin model.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Hugh Morrison, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. Email: morrison@ucar.edu

Save