• Ackerman, A. S., , M. P. Kirkpatrick, , D. E. Stevens, , and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432 , 10141017.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics and fractional cloudiness. Science, 245 , 12271230.

  • Augstein, E., , H. Riehl, , F. Ostapoff, , and V. Wagner, 1973: Mass and energy transports in an undisturbed Atlantic trade wind flow. Mon. Wea. Rev., 101 , 101111.

    • Search Google Scholar
    • Export Citation
  • Ball, F. K., 1960: Control of inversion height by surface heating. Quart. J. Roy. Meteor. Soc., 86 , 483494.

  • Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99 , 178196.

  • Betts, A. K., 1975: Parametric interpretation of trade wind cumulus budget studies. J. Atmos. Sci., 32 , 19341945.

  • Betts, A. K., , and J. Bartlo, 1991: The density temperature and the dry and wet virtual adiabats. Mon. Wea. Rev., 119 , 169175.

  • Bony, S., , and J-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32 .L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and M. C. Wyant, 1997: Moisture transport, lower tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54 , 148167.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , P. N. Blossey, , and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34 .L03813, doi:10.1029/2006GL027648.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., , and R. K. Hall, 1955: A census of cumulus-cloud height versus precipitation in the vicinity of Puerto Rico during the winter and spring of 1953–1954. J. Meteor., 12 , 176178.

    • Search Google Scholar
    • Export Citation
  • Carson, D. J., , and F. B. Smith, 1974: Thermodynamic model for the development of a convectively unstable boundary layer. Advances in Geophysics, Vol. 18A, Academic Press, 111–124.

  • Deardorff, J. W., 1974: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Bound.-Layer Meteor., 7 , 81106.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37 , 131147.

  • Deardorff, J. W., , E. G. Willis, , and D. K. Lilly, 1974: Comments on non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 100 , 122123.

    • Search Google Scholar
    • Export Citation
  • Driedonks, A. G. M., 1982: Models and observations of the growth of the atmospheric boundary layer. Bound.-Layer Meteor., 23 , 283306.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., , and M. A. Bister, 1996: Moist convective velocity and buoyancy scales. J. Atmos. Sci., 53 , 11111143.

  • Fedorovich, E., 1998: Bulk models of the atmospheric convective boundary layer. Buoyant Convection in Geophysical Flows, E. J. Plate et al., Eds., Vol. 513 of C, Kluwer Academic, 265–290.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., 2001: Cloud based fluxes in the cumulus-capped boundary layer. Quart. J. Roy. Meteor. Soc., 127 , 407422.

  • Grant, A. L. M., , and A. R. Brown, 1999: A similarity hypothesis for shallow-cumulus transports. Quart. J. Roy. Meteor. Soc., 125 , 19131936.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , R. S. Hemler, , and V. Ramaswamy, 1993: Radiative–convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50 , 39093927.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., , and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63 , 34213436.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., , and W. S. Lewellen, 2002: Entrainment and decoupling relations for cloudy boundary layers. J. Atmos. Sci., 59 , 29662986.

    • Search Google Scholar
    • Export Citation
  • McCaa, J. R., , and C. S. Bretherton, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part II: Regional simulations of marine boundary layer clouds. Mon. Wea. Rev., 132 , 883896.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., 2000: Entrainment rate, cloud fraction, and liquid water path of PBL stratocumulus clouds. J. Atmos. Sci., 57 , 36273643.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., , and M. A. LeMone, 1980: The fair weather boundary layer in GATE: The relationship of subcloud fluxes and structure to the distribution and enhancement of cumulus clouds. J. Atmos. Sci., 37 , 20512067.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., , P. J. Mason, , C-H. Moeng, , and U. Schumann, 1991: Large-eddy simulation of the convective boundary layer: A comparison of four computer codes. Turbulent Shear Flows 8: Selected Papers from the Eighth International Symposium on Turbulent Shear Flows, F. Durst et al., Eds., Springer-Verlag, 353–367.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., , and S. Esbensen, 1974: Heat and moisture budget analyses using BOMEX data. Mon. Wea. Rev., 102 , 1728.

  • Ogura, Y., , and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19 , 173179.

  • Pauluis, O., , and I. M. Held, 2002: Entropy budget of an atmosphere in radiative–convective equilibrium. Part I: Maximum work and frictional dissipation. J. Atmos. Sci., 59 , 125139.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37 , 125130.

  • Reuter, G. W., , and M. K. Yau, 1987: Mixing mechanisms in cumulus congestus clouds. Part II: Numerical simulations. J. Atmos. Sci., 44 , 798827.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., , T. C. Yeh, , J. S. Malkus, , and N. E. la Seur, 1951: The north–east trade of the Pacific Ocean. Quart. J. Roy. Meteor. Soc., 77 , 598626.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., 1998: Shallow convection. Buoyant Convection in Geophysical Flows, E. J. Plate et al., Eds., Vol. 513 of C, Kluwer Academic, 441–486.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., , and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52 , 650666.

    • Search Google Scholar
    • Export Citation
  • Sommeria, G., 1976: Three-dimensional simulation of turbulent processes in an undisturbed trade wind boundary layer. J. Atmos. Sci., 33 , 216241.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1958: Penetrative downdraughts in cumuli. Tellus, 10 , 381385.

  • Stevens, B., 2002: Entrainment in stratocumulus mixed layers. Quart. J. Roy. Meteor. Soc., 128 , 26632690.

  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33 , 605643.

  • Stevens, B., , W. R. Cotton, , G. Feingold, , and C-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55 , 36163638.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , G. Vali, , K. Comstock, , R. Wood, , M. C. van Zanten, , P. H. Austin, , C. S. Bretherton, , and D. H. Lenschow, 2005: Pockets of open cells and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86 , 5157.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , C-H. Moeng, , B. Stevens, , D. H. Lenschow, , and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55 , 30423064.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., 1973: A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci., 30 , 558567.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., , and G. C. Craig, 1998: Radiative convective equilibrium in a three-dimensional cloud-ensemble model. Quart. J. Roy. Meteor. Soc., 124 , 20732097.

    • Search Google Scholar
    • Export Citation
  • Turton, J. D., , and S. Nicholls, 1987: A study of the diurnal variation of stratocumulus using a multiple mixed layer model. Quart. J. Roy. Meteor. Soc., 113 , 9691009.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., , C. S. Bretherton, , H. A. Rand, , and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54 , 168192.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., , C. S. Bretherton, , J. T. Backmeister, , J. T. Kiehl, , I. M. Held, , S. A. Klein, , and B. J. Soden, 2006: A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity. Climate Dyn., 27 , 261279.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , and P. H. Austin, 2005a: Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport. J. Atmos. Sci., 62 , 12691290.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , and P. H. Austin, 2005b: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62 , 12911310.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., , and C. S. Bretherton, 2004: A simulation study of shallow moist convection and its impact on the atmospheric boundary layer. Mon. Wea. Rev., 132 , 23912409.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 111 111 6
PDF Downloads 62 62 2

On the Growth of Layers of Nonprecipitating Cumulus Convection

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Restricted access

Abstract

A prototype problem of a nonprecipitating convective layer growing into a layer of uniform stratification and exponentially decreasing humidity is introduced to study the mechanism by which the cumulus-topped boundary layer grows. The problem naturally admits the surface buoyancy flux, outer layer stratification, and moisture scale as governing parameters. Large-eddy simulations show that many of the well-known properties of the cumulus-topped boundary layer (including a well-mixed subcloud layer, a cloud-base transition layer, a conditionally unstable cloud layer, and an inversion layer) emerge naturally in the simulations. The simulations also quantify the differences between nonprecipitating moist convection and its dry counterpart. Whereas dry penetrative convective layers grow proportionally to the square root of time (diffusively) the cumulus layers grow proportionally to time (ballistically). The associated downward transport of warm, dry air results in a significant decrease in the surface Bowen ratio. The linear-in-time growth of the cloud layer is shown to result from the transport and subsequent evaporation of liquid water into the inversion layer. This process acts as a sink of buoyancy, which acts to imbue the free troposphere with the properties of the cloud layer. A simple model, based on this mechanism, and formulated in terms of an effective dry buoyancy flux (which is constrained by the subcloud layer’s similarity to a dry convective layer), is shown to provide good predictions of the growth of the layer across a wide range of governing parameters.

Corresponding author address: Bjorn Stevens, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Box 951565, Los Angeles, CA 90095-1565. Email: bstevens@atmos.ucla.edu

Abstract

A prototype problem of a nonprecipitating convective layer growing into a layer of uniform stratification and exponentially decreasing humidity is introduced to study the mechanism by which the cumulus-topped boundary layer grows. The problem naturally admits the surface buoyancy flux, outer layer stratification, and moisture scale as governing parameters. Large-eddy simulations show that many of the well-known properties of the cumulus-topped boundary layer (including a well-mixed subcloud layer, a cloud-base transition layer, a conditionally unstable cloud layer, and an inversion layer) emerge naturally in the simulations. The simulations also quantify the differences between nonprecipitating moist convection and its dry counterpart. Whereas dry penetrative convective layers grow proportionally to the square root of time (diffusively) the cumulus layers grow proportionally to time (ballistically). The associated downward transport of warm, dry air results in a significant decrease in the surface Bowen ratio. The linear-in-time growth of the cloud layer is shown to result from the transport and subsequent evaporation of liquid water into the inversion layer. This process acts as a sink of buoyancy, which acts to imbue the free troposphere with the properties of the cloud layer. A simple model, based on this mechanism, and formulated in terms of an effective dry buoyancy flux (which is constrained by the subcloud layer’s similarity to a dry convective layer), is shown to provide good predictions of the growth of the layer across a wide range of governing parameters.

Corresponding author address: Bjorn Stevens, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Box 951565, Los Angeles, CA 90095-1565. Email: bstevens@atmos.ucla.edu

Save