• Ackerman, T. P., , K-N. Liou, , F. P. J. Valero, , and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45 , 16061623.

  • Back, L. E., , and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33 .L17810, doi:10.1029/2006GL026672.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to the equatorial anomalies of ocean temperature. Tellus, 18 , 820829.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Boehm, M. T., , and S. Lee, 2003: The implications of tropical Rossby waves for tropical tropopause cirrus formation and for the equatorial upwelling of the Brewer–Dobson circulation. J. Atmos. Sci., 60 , 247261.

    • Search Google Scholar
    • Export Citation
  • Cau, P., , J. Methven, , and B. J. Hoskins, 2005: Representation of dry tropical layers and their origins in ERA-40 data. J. Geophys. Res., 110 .D06110, doi:10.1029/2004JD004928.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., , R. H. Johnson, , P. T. Haertel, , and J. Wang, 2003: Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool. J. Climate, 16 , 23702384.

    • Search Google Scholar
    • Export Citation
  • Corti, T., , B. P. Luo, , Q. Fu, , H. Vomel, , and T. Peter, 2006: The impact of cirrus clouds on tropical troposphere-to-stratosphere transport. Atmos. Chem. Phys. Discuss., 6 , 17251747.

    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., 1993: In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones. J. Geophys. Res., 98 , 86658681.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., , J. M. Wallace, , and I. Kraucunas, 2005: Tropical zonal momentum balance in the NCEP reanalyses. J. Atmos. Sci., 62 , 24992513.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., , and R. V. Martin, 2005: The vertical structure of tropical convection and its impact on the budgets of water vapor and ozone. J. Atmos. Sci., 62 , 15601573.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., , M. Loewenstein, , J. Podolske, , S. J. Oltmans, , and M. Proffitt, 1999: A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements. J. Geophys. Res., 104 , D18. 2209522102.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., , K. K. Kelly, , and E. M. Weinstock, 2002: A simple explanation for the increase in relative humidity between 11 and 14 km in the tropics. J. Geophys. Res., 107 .D23. 4736, doi:10.1029/2002JD002185.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., , H. Wernli, , and T. Peter, 2004: Tropical troposphere-to-stratosphere transport inferred from trajectory calculations. J. Geophys. Res., 109 .D03108, doi:10.1029/2003JD004069.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., , M. Bonazzola, , P. H. Haynes, , and T. Peter, 2005: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res., 110 .D08107, doi:10.1029/2004JD005516.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., , and P. M. de F. Forster, 2002: A climatology of the tropical tropopause layer. J. Meteor. Soc. Japan, 80 , 911924.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Highwood, E. J., , and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124 , 15791604.

  • Hoskins, B. J., , A. J. Simmons, , and D. G. Andrews, 1977: Energy dispersion in a barotropic atmosphere. Quart. J. Roy. Meteor. Soc., 103 , 553567.

    • Search Google Scholar
    • Export Citation
  • Jackson, D. R., , J. Methven, , and V. Pope, 2001: Transport in the low latitude tropopause zone diagnosed using particle trajectories. J. Atmos. Sci., 58 , 173192.

    • Search Google Scholar
    • Export Citation
  • Kerr-Munslow, A. M., , and W. A. Norton, 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part I: ECMWF analyses. J. Atmos. Sci., 63 , 14101419.

    • Search Google Scholar
    • Export Citation
  • Kley, D., , A. L. Schmeltekopf, , K. Kelly, , R. H. Winkler, , T. L. Thompson, , and M. McFarland, 1982: Transport of water through the tropical tropopause. Geophys. Res. Lett., 9 , 617620.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., , A. J. Dascher, , and D. Huffman, 1982: Measurements of the aerosol and ice crystal populations in tropical stratospheric cumulonimbus anvils. Geophys. Res. Lett., 9 , 613616.

    • Search Google Scholar
    • Export Citation
  • Kraucunas, I., , and D. L. Hartmann, 2007: Tropical stationary waves in a nonlinear shallow-water model with realistic basic states. J. Atmos. Sci., 64 , 25402557.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1971: Tropical east–west circulations during the northern summer. J. Atmos. Sci., 28 , 13421347.

  • Krishnamurti, T. N., , M. Kanamitsu, , W. J. Koss, , and J. D. Lee, 1973: Tropical east–west circulations during the northern winter. J. Atmos. Sci., 30 , 780787.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., , and C. S. Bretherton, 2004: Convective influence of the heat balance of the tropical tropopause layer: A cloud-resolving model study. J. Atmos. Sci., 61 , 29192927.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 1999: Why are the climatological zonal winds easterly in the equatorial upper troposphere. J. Atmos. Sci., 56 , 13531363.

  • Lilly, D. K., 1988: Cirrus outflow dynamics. J. Atmos. Sci., 45 , 15941605.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2542.

  • McFarquhar, G. M., , A. J. Heymsfield, , J. Spinhirne, , and B. Hart, 2000: Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57 , 18411853.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101 , 39894006.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., , and S. Gould-Stewart, 1981: A stratospheric fountain? J. Atmos. Sci., 38 , 27892796.

  • Newell, R. E., , J. W. Kidson, , D. G. Vincent, , and G. J. Boer, 1974: The General Circulation of the Tropical Atmosphere and Interactions with Extratropical Latitudes. Vol. 2, MIT Press, 371 pp.

    • Search Google Scholar
    • Export Citation
  • Norton, W. A., 2001: Longwave heating of the tropical lower stratosphere. Geophys. Res. Lett., 28 , 36533656.

  • Norton, W. A., 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part II: Model results. J. Atmos. Sci., 63 , 14201431.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and F. Wu, 2005: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res., 110 .D03102, doi:10.1029/2004JD005006.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , R. R. Garcia, , and F. Wu, 2002: Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci., 59 , 21412152.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., , and C. L. Vlcek, 1969: The annual temperature variation in the lower tropical stratosphere. J. Atmos. Sci., 26 , 163167.

  • Sadler, J. C., cited. 2006: The upper tropospheric circulation over the global tropics. [Available online at http://www.soest.hawaii.edu/Library/Sadler.html#database.].

  • Sherwood, S. C., 2000: A stratospheric “drain” over the Maritime Continent. Geophys. Res. Lett., 27 , 677680.

  • Simmons, A. J., 1982: The forcing of stationary wave motion by tropical diabatic heating. Quart. J. Roy. Meteor. Soc., 108 , 503534.

  • Simmons, A. J., , A. Untch, , C. Jakob, , P. Kallberg, , and P. Unden, 1999: Stratospheric water vapor and tropical tropopause temperatures in ECMWF analyses and multi-year simulations. Quart. J. Roy. Meteor. Soc., 125 , 353386.

    • Search Google Scholar
    • Export Citation
  • Thompson Jr., R. M., , S. W. Payne, , E. E. Recker, , and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36 , 5372.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , D. P. Stepaniak, , and J. M. Caron, 2000: The global monsoon as seen throught the divergent atmospheric circulation. J. Climate, 13 , 39693993.

    • Search Google Scholar
    • Export Citation
  • Troup, A. J., 1965: The Southern Oscillation. Quart. J. Roy. Meteor. Soc., 91 , 490506.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Reanalysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Wang, P-H., , P. Minnis, , M. P. McCormick, , G. S. Kent, , and K. M. Skeens, 1996: A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990). J. Geophys. Res., 101 , D23. 2940729430.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1972: Response of the tropical atmosphere to local steady forcing. Mon. Wea. Rev., 100 , 518541.

  • Webster, P. J., 1981: Mechanisms determining the atmospheric response to sea surface temperature anomalies. J. Atmos. Sci., 38 , 554571.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., , R. J. Slutz, , R. L. Jenne, , and P. M. Steurer, 1987: A comprehensive ocean–atmosphere data set. Bull. Amer. Meteor. Soc., 68 , 12391250.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , M. McGauley, , and N. A. Bond, 2004: Shallow meridional circulation in the tropical eastern Pacific. J. Climate, 17 , 133139.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 3
PDF Downloads 21 21 1

Structure of the Annual-Mean Equatorial Planetary Waves in the ERA-40 Reanalyses

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The three-dimensional structure of the annual-mean equatorial planetary waves in the 40-yr ECMWF Re-Analysis (ERA-40) is documented. The features in the free atmosphere are predominantly equatorially symmetric, driven by east–west heating gradients. The geopotential height and wind perturbations are strongest at or just below the 150-hPa level. Below the level of maximum amplitude, the circulations in the waves are thermally direct with latent heat release in deep convective clouds and radiative cooling in the intervening cloud-free regions. Within the overlying capping layer, the wave-related circulations are thermally indirect, with rising of the coldest air and sinking of air that is less cold. At the cold point, just above the 100-hPa (17 km) level, the ERA-40 annual-mean vertical velocity in the equatorial belt ranges up to 3 mm s−1 over the equatorial western Pacific during the boreal winter, implying diabatic heating rates of up to 3°C day−1, an order of magnitude larger than typical clear-sky values. Strong heating is consistent with evidence of widespread thin and subvisible cirrus cloud layers over this region. It is hypothesized that the air mass as a whole is rising (as opposed to just the air in the updrafts of convective clouds) and that this plume of ascending air spreads out horizontally at or just above the cold point, ventilating and lifting the entire lower stratosphere.

El Niño years are characterized by anomalously weak equatorial planetary waves in the Indo-Pacific sector and slightly enhanced waves over the Atlantic sector and cold years of the El Niño–Southern Oscillation (ENSO) cycle by the opposite conditions. Equatorial Pacific sea surface temperature is as well correlated with the strength of the equatorial planetary waves in the upper troposphere over the Indo-Pacific sector as it is with the conventional Southern Oscillation index based on sea level pressure.

Corresponding author address: John M. Wallace, Department of Atmospheric Sciences, Department of Atmospheric Sciences, 408 ATG Bldg., Box 351640, Seattle, WA 98195-1640. Email: wallace@atmos.washington.edu

Abstract

The three-dimensional structure of the annual-mean equatorial planetary waves in the 40-yr ECMWF Re-Analysis (ERA-40) is documented. The features in the free atmosphere are predominantly equatorially symmetric, driven by east–west heating gradients. The geopotential height and wind perturbations are strongest at or just below the 150-hPa level. Below the level of maximum amplitude, the circulations in the waves are thermally direct with latent heat release in deep convective clouds and radiative cooling in the intervening cloud-free regions. Within the overlying capping layer, the wave-related circulations are thermally indirect, with rising of the coldest air and sinking of air that is less cold. At the cold point, just above the 100-hPa (17 km) level, the ERA-40 annual-mean vertical velocity in the equatorial belt ranges up to 3 mm s−1 over the equatorial western Pacific during the boreal winter, implying diabatic heating rates of up to 3°C day−1, an order of magnitude larger than typical clear-sky values. Strong heating is consistent with evidence of widespread thin and subvisible cirrus cloud layers over this region. It is hypothesized that the air mass as a whole is rising (as opposed to just the air in the updrafts of convective clouds) and that this plume of ascending air spreads out horizontally at or just above the cold point, ventilating and lifting the entire lower stratosphere.

El Niño years are characterized by anomalously weak equatorial planetary waves in the Indo-Pacific sector and slightly enhanced waves over the Atlantic sector and cold years of the El Niño–Southern Oscillation (ENSO) cycle by the opposite conditions. Equatorial Pacific sea surface temperature is as well correlated with the strength of the equatorial planetary waves in the upper troposphere over the Indo-Pacific sector as it is with the conventional Southern Oscillation index based on sea level pressure.

Corresponding author address: John M. Wallace, Department of Atmospheric Sciences, Department of Atmospheric Sciences, 408 ATG Bldg., Box 351640, Seattle, WA 98195-1640. Email: wallace@atmos.washington.edu

Save