• Arnaldson, G., , R. S. Greenfield, , and E. Newburg, 1968: A numerical experiment in dry and moist convection including the rain stage. J. Atmos. Sci., 25 , 404415.

    • Search Google Scholar
    • Export Citation
  • Bannon, P. R., 2002: Theoretical foundations for models of moist convection. J. Atmos. Sci., 59 , 19671982.

  • Clark, T. L., , and R. List, 1971: Dynamics of a falling particle zone. J. Atmos. Sci., 28 , 718727.

  • Cotton, W. R., , and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 880 pp.

  • Curry, J. C., , and P. J. Webster, 1999: Thermodynamics of Atmosphere and Oceans. Academic Press, 471 pp.

  • Dufour, L., 1963: Sur la température virtuelle et la pression virtuelle de l’air humide (On the virtual temperature and virtual pressure of the moist air). Institut Royal Météorologique de Belgique. Publications Série 50, No. 40, 2–16.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 550 pp.

  • Federer, B., , and A. Waldvogel, 1975: Hail and rain drop size distributions from a Swiss multicell storm. J. Appl. Meteor., 14 , 9197.

  • Guldberg, C. M., , and H. Mohn, 1876: Études sur les Mouvements de l’Atmosphère. (Studies on the Atmosphere Motion). Part 1, Christiana, 39 pp.

    • Search Google Scholar
    • Export Citation
  • Houze Jr, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Jacobson, M. Z., 2000: Fundamentals of Atmospheric Modeling. Cambridge University Press, 656 pp.

  • List, R., , and E. P. Lozowski, 1970: Pressure perturbations and buoyancy in convective clouds. J. Atmos. Sci., 27 , 168170.

  • Mason, B. J., 1971: The Physics of Clouds. Oxford University Press, 671 pp.

  • Ogura, Y., 1963: The evolution of a moist convective element in a shallow, conditionally unstable atmosphere: A numerical calculation. J. Atmos. Sci., 20 , 407424.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1980: Microphysics of Clouds and Precipitation. D. Reidel Publishing, 714 pp.

  • Rogers, R. R., , and M. K. Yau, 1989: A Short Course in Cloud Physics. Pergamon Press, 293 pp.

  • Saunders, P. M., 1957: The thermodynamics of saturated air: A contribution to the classical theory. Quart. J. Roy. Meteor. Soc., 83 , 342350.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31 , 10671078.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 71 71 21
PDF Downloads 73 73 22

On the Dynamic Interpretation of the Virtual Temperature

View More View Less
  • 1 Centre pour l’Etude et la Simulation du Climat à l’Echelle Régionale (ESCER), Département des Sciences de la Terre et de l’Atmosphère, Université du Québec à Montréal, Montreal, Quebec, Canada
© Get Permissions
Restricted access

Abstract

The concept of virtual temperature is reviewed and extended into the definition of the dynamic virtual temperature, which is the temperature that a parcel of dry air should have in order to experience the same acceleration as a parcel of cloud air. It is obtained from the equations of motion and depends on the water content in the three thermodynamic states: vapor, liquid, and solid. The scale analysis of the equation of the dynamic virtual temperature shows that the terms due to the acceleration and phase transitions of the particles are negligible with respect to the terms depending on gravity. Therefore, even though conceptually more adequate, the approximate mathematical expression of the dynamic virtual temperature is practically identical to the conventional definition of virtual temperature accounting for water loading.

Corresponding author address: Enrico Torlaschi, Département des sciences de la Terre et de l’Atmosphère, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montreal, QC H3C 3P8, Canada. Email: Torlaschi.Enrico@uqam.ca

Abstract

The concept of virtual temperature is reviewed and extended into the definition of the dynamic virtual temperature, which is the temperature that a parcel of dry air should have in order to experience the same acceleration as a parcel of cloud air. It is obtained from the equations of motion and depends on the water content in the three thermodynamic states: vapor, liquid, and solid. The scale analysis of the equation of the dynamic virtual temperature shows that the terms due to the acceleration and phase transitions of the particles are negligible with respect to the terms depending on gravity. Therefore, even though conceptually more adequate, the approximate mathematical expression of the dynamic virtual temperature is practically identical to the conventional definition of virtual temperature accounting for water loading.

Corresponding author address: Enrico Torlaschi, Département des sciences de la Terre et de l’Atmosphère, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montreal, QC H3C 3P8, Canada. Email: Torlaschi.Enrico@uqam.ca

Save