Numerical Simulations of Forced Shallow-Water Turbulence: Effects of Moist Convection on the Large-Scale Circulation of Jupiter and Saturn

Adam P. Showman The University of Arizona, Tucson, Arizona

Search for other papers by Adam P. Showman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To test the hypothesis that the zonal jets on Jupiter and Saturn result from energy injected by thunderstorms into the cloud layer, forced-dissipative numerical simulations of the shallow-water equations in spherical geometry are presented. The forcing consists of sporadic, isolated circular mass pulses intended to represent thunderstorms; the damping, representing radiation, removes mass evenly from the layer. These results show that the deformation radius provides strong control over the behavior. At deformation radii <2000 km (0.03 Jupiter radii), the simulations produce broad jets near the equator, but regions poleward of 15°–30° latitude instead become dominated by vortices. However, simulations at deformation radii >4000 km (0.06 Jupiter radii) become dominated by barotropically stable zonal jets with only weak vortices. The lack of midlatitude jets at a small deformation radii results from the suppression of the beta effect by column stretching; this effect has been previously documented in the quasigeostrophic system but never before in the full shallow-water system. In agreement with decaying shallow-water turbulence simulations, but in disagreement with Jupiter and Saturn, the equatorial flows in these forced simulations are always westward. In analogy with purely two-dimensional turbulence, the size of the coherent structures (jets and vortices) depends on the relative strengths of forcing and damping; stronger damping removes energy faster as it cascades upscale, leading to smaller vortices and more closely spaced jets in the equilibrated state. Forcing and damping parameters relevant to Jupiter produce flows with speeds up to 50–200 m s−1 and a predominance of anticyclones over cyclones, both in agreement with observations. However, the dominance of vortices over jets at deformation radii thought to be relevant to Jupiter (1000–3000 km) suggests that either the actual deformation radius is larger than previously believed or that three-dimensional effects, not included in the shallow-water equations, alter the dynamics in a fundamental manner.

Corresponding author address: A. P. Showman, Department of Planetary Sciences, Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721. Email: showman@lpl.arizona.edu

This article included in the Jets and Annular Structures in Geophysical Fluids (Jets) special collection.

Abstract

To test the hypothesis that the zonal jets on Jupiter and Saturn result from energy injected by thunderstorms into the cloud layer, forced-dissipative numerical simulations of the shallow-water equations in spherical geometry are presented. The forcing consists of sporadic, isolated circular mass pulses intended to represent thunderstorms; the damping, representing radiation, removes mass evenly from the layer. These results show that the deformation radius provides strong control over the behavior. At deformation radii <2000 km (0.03 Jupiter radii), the simulations produce broad jets near the equator, but regions poleward of 15°–30° latitude instead become dominated by vortices. However, simulations at deformation radii >4000 km (0.06 Jupiter radii) become dominated by barotropically stable zonal jets with only weak vortices. The lack of midlatitude jets at a small deformation radii results from the suppression of the beta effect by column stretching; this effect has been previously documented in the quasigeostrophic system but never before in the full shallow-water system. In agreement with decaying shallow-water turbulence simulations, but in disagreement with Jupiter and Saturn, the equatorial flows in these forced simulations are always westward. In analogy with purely two-dimensional turbulence, the size of the coherent structures (jets and vortices) depends on the relative strengths of forcing and damping; stronger damping removes energy faster as it cascades upscale, leading to smaller vortices and more closely spaced jets in the equilibrated state. Forcing and damping parameters relevant to Jupiter produce flows with speeds up to 50–200 m s−1 and a predominance of anticyclones over cyclones, both in agreement with observations. However, the dominance of vortices over jets at deformation radii thought to be relevant to Jupiter (1000–3000 km) suggests that either the actual deformation radius is larger than previously believed or that three-dimensional effects, not included in the shallow-water equations, alter the dynamics in a fundamental manner.

Corresponding author address: A. P. Showman, Department of Planetary Sciences, Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721. Email: showman@lpl.arizona.edu

This article included in the Jets and Annular Structures in Geophysical Fluids (Jets) special collection.

Save
  • Achterberg, R. K., and A. P. Ingersoll, 1989: A normal-mode approach to Jovian atmospheric dynamics. J. Atmos. Sci., 46 , 24482462.

  • Allison, M., 2000: A similarity model for the windy Jovian thermocline. Planet. Space Sci., 48 , 753774.

  • Allison, M., A. D. Del Genio, and W. Zhou, 1995: Richardson number constraints for the Jupiter and outer planet wind regime. Geophys. Res. Lett., 22 , 29572960.

    • Search Google Scholar
    • Export Citation
  • Arai, M., and T. Yamagata, 1994: Asymmetric evolution of eddies in rotating shallow water. Chaos, 4 , 163175.

  • Banfield, D., P. J. Gierasch, M. Bell, E. Ustinov, A. P. Ingersoll, A. R. Vasavada, R. A. West, and M. J. S. Belton, 1998: Jupiter’s cloud structure from Galileo imaging data. Icarus, 135 , 230250.

    • Search Google Scholar
    • Export Citation
  • Cho, J. Y-K., and L. M. Polvani, 1996a: The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets. Science, 8 , 112.

    • Search Google Scholar
    • Export Citation
  • Cho, J. Y-K., and L. M. Polvani, 1996b: The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Phys. Fluids, 8 , 15311552.

    • Search Google Scholar
    • Export Citation
  • Cho, J. Y-K., M. de la Torre Juàrez, A. P. Ingersoll, and D. G. Dritschel, 2001: A high-resolution, three-dimensional model of Jupiter’s Great Red Spot. J. Geophys. Res., 106 , 50995106.

    • Search Google Scholar
    • Export Citation
  • Choi, D. S., P. J. Gierasch, D. Banfield, and A. P. Showman, 2005: Velocity and vorticity measurements of Jupiter’s Great Red Spot using automated cloud feature trackers. Eos, Trans. Amer. Geophys. Union, 86 (Fall Meeting Suppl.), Abstract P11A–0089.

  • Conrath, B. J., P. J. Gierasch, and S. S. Leroy, 1990: Temperature and circulation in the stratosphere of the outer planets. Icarus, 83 , 255281.

    • Search Google Scholar
    • Export Citation
  • Danilov, S., and D. Gurarie, 2001: Forced two-dimensional turbulence in spectral and physical space. Phys. Rev. E, 63 , 6. 112.

  • Danilov, S., and D. Gurarie, 2002: Rhines scale and spectra of the β-plane turbulence with bottom drag. Phys. Rev. E, 65 , 6. 301.

  • Del Genio, A. D., J. M. Barbara, J. Ferrier, A. P. Ingersoll, R. A. West, A. R. Vasavada, J. Spitale, and C. C. Porco, 2007: Saturn eddy momentum fluxes and convection: First estimates from Cassini images. Icarus, in press.

    • Search Google Scholar
    • Export Citation
  • Dowling, T. E., 1995: Dynamics of Jovian atmospheres. Annu. Rev. Fluid Mech., 27 , 293334.

  • Dowling, T. E., and A. P. Ingersoll, 1989: Jupiter’s Great Red Spot as a shallow water system. J. Atmos. Sci., 46 , 32563278.

  • Dowling, T. E., A. S. Fischer, P. J. Gierasch, J. Harrington, R. P. Lebeau, and C. M. Santori, 1998: The Explicit Planetary Isentropic-Coordinate (EPIC) Atmospheric Model. Icarus, 132 , 221238.

    • Search Google Scholar
    • Export Citation
  • Farge, M., and R. Sadourny, 1989: Wave-vortex dynamics in rotating shallow water. J. Fluid Mech., 206 , 433462.

  • Galperin, B., S. Sukoriansky, N. Dikovskaya, P. L. Read, Y. H. Yamazaki, and R. Wordsworth, 2006: Anisotropic turbulence and zonal jets in rotating flows with a β-effect. Nonlinear Proc. Geophys., 13 , 8398.

    • Search Google Scholar
    • Export Citation
  • Gierasch, P. J., 2004: Stability of jets on Jupiter and Saturn. Icarus, 167 , 212219.

  • Gierasch, P. J., J. A. Magalhaes, and B. J. Conrath, 1986: Zonal mean properties of Jupiter’s upper troposphere from Voyager infrared observations. Icarus, 67 , 456483.

    • Search Google Scholar
    • Export Citation
  • Gierasch, P. J., and Coauthors, 2000: Observation of moist convection in Jupiter’s atmosphere. Nature, 403 , 628630.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Hsu, Y-J. G., and A. Arakawa, 1990: Numerical modeling of the atmosphere with an isentropic vertical coordinate. Mon. Wea. Rev., 118 , 19331959.

    • Search Google Scholar
    • Export Citation
  • Huang, H-P., and W. A. Robinson, 1998: Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci., 55 , 611632.

    • Search Google Scholar
    • Export Citation
  • Huang, H-P., B. Galperin, and S. Sukoriansky, 2001: Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere. Phys. Fluids, 13 , 225240.

    • Search Google Scholar
    • Export Citation
  • Hueso, R., A. Sanchez-Lavega, and T. Guillot, 2002: A model for large-scale convective storms in Jupiter. J. Geophys. Res., 107 .5075, doi:10.1029/2001JE001839.

    • Search Google Scholar
    • Export Citation
  • Iacono, R., M. V. Struglia, and C. Ronchi, 1999a: Spontaneous formation of equatorial jets in freely decaying shallow water turbulence. Phys. Fluids, 11 , 12721274.

    • Search Google Scholar
    • Export Citation
  • Iacono, R., M. V. Struglia, C. Ronchi, and S. Nicastro, 1999b: High-resolution simulations of freely decaying shallow-water turbulence on a rotating sphere. Nuovo Cimento Soc. Ital. Fis. C, 22 , 813821.

    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., R. F. Beebe, J. L. Mitchell, G. W. Garneau, G. M. Yagi, and J-P. Muller, 1981: Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images. J. Geophys. Res., 86 , 87338743.

    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., P. J. Gierasch, D. Banfield, and A. R. Vasavada, and A3 Galileo Imaging Team, 2000: Moist convection as an energy source for the large-scale motions in Jupiter’s atmosphere. Nature, 403 , 630632.

    • Search Google Scholar
    • Export Citation
  • Li, L., A. P. Ingersoll, A. R. Vasavada, C. C. Porco, A. D. Del Genio, and S. P. Ewald, 2004: Life cycles of spots on Jupiter from Cassini images. Icarus, 172 , 923.

    • Search Google Scholar
    • Export Citation
  • Li, L., A. P. Ingersoll, and X. Huang, 2006: Interaction of moist convection with zonal jets on Jupiter and Saturn. Icarus, 180 , 113123.

    • Search Google Scholar
    • Export Citation
  • Lian, Y., A. P. Showman, and P. J. Gierasch, 2006: Deep jets on gas giant planets. Eos, Trans. Amer. Geophys. Union, 87 (Fall Meeting Suppl.), Abstract OS45L–11.

  • Little, B., C. D. Anger, A. P. Ingersoll, A. R. Vasavada, D. A. Senske, H. H. Breneman, and W. J. Borucki, and The Galileo SSI Team, 1999: Galileo images of lightning on Jupiter. Icarus, 142 , 306323.

    • Search Google Scholar
    • Export Citation
  • Mac Low, M-M., and A. P. Ingersoll, 1986: Merging of vortices in the atmosphere of Jupiter—An analysis of Voyager images. Icarus, 65 , 353369.

    • Search Google Scholar
    • Export Citation
  • Magalhães, J. A., A. Seiff, and R. E. Young, 2002: The stratification of Jupiter’s troposphere at the Galileo Probe entry site. Icarus, 158 , 410433.

    • Search Google Scholar
    • Export Citation
  • Manfroi, A. J., and W. R. Young, 1999: Slow evolution of zonal jets on the beta plane. J. Atmos. Sci., 56 , 784800.

  • Marcus, P. S., 1988: Numerical simulation of Jupiter’s Great Red Spot. Nature, 331 , 693696.

  • Marcus, P. S., 1990: Vortex dynamics in a shearing zonal flow. J. Fluid Mech., 215 , 393430.

  • Marcus, P. S., T. Kundu, and C. Lee, 2000: Vortex dynamics and zonal flows. Phys. Plasmas, 7 , 16301640.

  • Nakajima, K., S-I. Takehiro, M. Ishiwatari, and Y-Y. Hayashi, 2000: Numerical modeling of Jupiter’s moist convection layer. Geophys. Res. Lett., 27 , 31293132.

    • Search Google Scholar
    • Export Citation
  • Nozawa, T., and S. Yoden, 1997: Formation of zonal band structure in forced two-dimensional turbulence on a rotating sphere. Phys. Fluids, 9 , 20812093.

    • Search Google Scholar
    • Export Citation
  • Okuno, A., and A. Masuda, 2003: Effect of horizontal divergence on the geostrophic turbulence on a beta-plane: Suppression of the Rhines effect. Phys. Fluids, 15 , 5665.

    • Search Google Scholar
    • Export Citation
  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50 , 20732106.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Peltier, W. R., and G. R. Stuhne, 2002: Meteorology at the Millennium. International Geophysics Series, Vol. 83, Academic Press, 43–61.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., J. C. McWilliams, M. A. Spall, and R. Ford, 1994: The coherent structures of shallow-water turbulence: Deformation-radius effects, cyclone/anticyclone asymmetry and gravity-wave generation. Chaos, 4 , 177186.

    • Search Google Scholar
    • Export Citation
  • Porco, C. C., and Coauthors, 2003: Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science, 299 , 15411547.

  • Porco, C. C., and Coauthors, 2005: Cassini imaging science: Initial results on Saturn’s atmosphere. Science, 307 , 12431247.

  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69 , 417443.

  • Salyk, C., A. P. Ingersoll, J. Lorre, A. R. Vasavada, S. Ewald, and A. D. Del Genio, 2006: Interaction between eddies and mean flow in Jupiter’s atmospheres: Analysis of Cassini imaging data. Icarus, 185 , 430442.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., and L. Polvani, 2007: Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci., 64 , 31583176.

    • Search Google Scholar
    • Export Citation
  • Showman, A. P., and A. P. Ingersoll, 1998: Interpretation of Galileo Probe data and implications for Jupiter’s dry downdrafts. Icarus, 132 , 205220.

    • Search Google Scholar
    • Export Citation
  • Showman, A. P., and T. E. Dowling, 2000: Nonlinear simulations of Jupiter’s 5-micron hot spots. Science, 289 , 17371740.

  • Showman, A. P., P. J. Gierasch, and Y. Lian, 2006: Deep zonal winds can result from shallow driving in a giant-planet atmosphere. Icarus, 182 , 513526.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2004: A local model for planetary atmospheres forced by small-scale convection. J. Atmos. Sci., 61 , 14201433.

  • Smith, K. S., G. Boccaletti, C. C. Henning, I. Marinov, C. Y. Tam, I. M. Held, and G. K. Vallis, 2002: Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech., 469 , 1348.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and J. C. McWilliams, 1992: Rotational and gravitational influences on the degree of balance in the shallow-water equations. Geophys. Astrophys. Fluid Dyn., 64 , 129.

    • Search Google Scholar
    • Export Citation
  • Stegner, A., and D. G. Dritschel, 2000: Numerical investigation of the stability of isolated shallow water vortices. J. Phys. Oceanogr., 30 , 25622573.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., N. Dikovskaya, and B. Galperin, 2007: On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci., 64 , 33123327.

    • Search Google Scholar
    • Export Citation
  • Theiss, J., 2004: Equatorward energy cascade, critical latitude, and the predominance of cyclonic vortices in geostrophic turbulence. J. Phys. Oceanogr., 34 , 16631678.

    • Search Google Scholar
    • Export Citation
  • Vasavada, A. R., and A. P. Showman, 2005: Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys., 68 , 19351996.

    • Search Google Scholar
    • Export Citation
  • Vasavada, A. R., S. M. Hörst, M. R. Kennedy, A. P. Ingersoll, C. C. Porco, A. D. Del Genio, and R. A. West, 2006: Cassini imaging of Saturn: Southern hemisphere winds and vortices. J. Geophys. Res., 111 .E05004, doi:10.1029/2005JE002563.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1978: Planetary circulations: I. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci., 35 , 13991426.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1979: Planetary circulations: 2. The Jovian quasi-geostrophic regime. J. Atmos. Sci., 36 , 932968.

  • Williams, G. P., 2003: Jovian dynamics. Part III: Multiple, migrating, and equatorial jets. J. Atmos. Sci., 60 , 12701296.

  • Yoden, S., and M. Yamada, 1993: A numerical experiment on two-dimensional decaying turbulence on a rotating sphere. J. Atmos. Sci., 50 , 631644.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., and A. F. Thompson, 2006: Beta plane jets and equilibration of baroclinic eddies. Eos, Trans. Amer. Geophys. Union, 87 (Fall Meeting Suppl.), Abstract OS42F–01.

  • Yuan, L., and K. Hamilton, 1994: Equilibrium dynamics in a forced-dissipative f-plane shallow-water system. J. Fluid Mech., 280 , 369394.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 893 265 38
PDF Downloads 621 133 12