On the Arrest of Inverse Energy Cascade and the Rhines Scale

Semion Sukoriansky Department of Mechanical Engineering, and Perlstone Center for Aeronautical Engineering Studies, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Search for other papers by Semion Sukoriansky in
Current site
Google Scholar
PubMed
Close
,
Nadejda Dikovskaya Department of Mechanical Engineering, and Perlstone Center for Aeronautical Engineering Studies, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Search for other papers by Nadejda Dikovskaya in
Current site
Google Scholar
PubMed
Close
, and
Boris Galperin College of Marine Science, University of South Florida, St. Petersburg, Florida

Search for other papers by Boris Galperin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The notion of the cascade arrest in a β-plane turbulence in the context of continuously forced flows is revised in this paper using both theoretical analysis and numerical simulations. It is demonstrated that the upscale energy propagation cannot be stopped by a β effect and can only be absorbed by friction. A fundamental dimensional parameter in flows with a β effect, the Rhines scale, LR, has traditionally been associated with the cascade arrest or with the scale that separates turbulence and Rossby wave–dominated spectral ranges. It is shown that rather than being a measure of the inverse cascade arrest, LR is a characteristic of different processes in different flow regimes. In unsteady flows, LR can be identified with the moving energy front propagating toward the decreasing wavenumbers. When large-scale energy sink is present, β-plane turbulence may attain several steady-state regimes. Two of these regimes are highlighted: friction-dominated and zonostrophic. In the former, LR does not have any particular significance, while in the latter, the Rhines scale nearly coincides with the characteristic length associated with the large-scale friction. Spectral analysis in the frequency domain demonstrates that Rossby waves coexist with turbulence on scales smaller than LR thus indicating that the Rhines scale cannot be viewed as a crossover between turbulence and Rossby wave ranges.

Corresponding author address: Semion Sukoriansky, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel. Email: semion@bgu.ac.il

This article included in the Jets and Annular Structures in Geophysical Fluids (Jets) special collection.

Abstract

The notion of the cascade arrest in a β-plane turbulence in the context of continuously forced flows is revised in this paper using both theoretical analysis and numerical simulations. It is demonstrated that the upscale energy propagation cannot be stopped by a β effect and can only be absorbed by friction. A fundamental dimensional parameter in flows with a β effect, the Rhines scale, LR, has traditionally been associated with the cascade arrest or with the scale that separates turbulence and Rossby wave–dominated spectral ranges. It is shown that rather than being a measure of the inverse cascade arrest, LR is a characteristic of different processes in different flow regimes. In unsteady flows, LR can be identified with the moving energy front propagating toward the decreasing wavenumbers. When large-scale energy sink is present, β-plane turbulence may attain several steady-state regimes. Two of these regimes are highlighted: friction-dominated and zonostrophic. In the former, LR does not have any particular significance, while in the latter, the Rhines scale nearly coincides with the characteristic length associated with the large-scale friction. Spectral analysis in the frequency domain demonstrates that Rossby waves coexist with turbulence on scales smaller than LR thus indicating that the Rhines scale cannot be viewed as a crossover between turbulence and Rossby wave ranges.

Corresponding author address: Semion Sukoriansky, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel. Email: semion@bgu.ac.il

This article included in the Jets and Annular Structures in Geophysical Fluids (Jets) special collection.

Save
  • Balk, A., 1991: A new invariant for Rossby wave systems. Phys. Lett. A, 155 , 2024.

  • Balk, A., 2005: Angular distribution of Rossby wave energy. Phys. Lett. A, 345 , 154160.

  • Balk, A., and F. van Heerden, 2006: Conservation style of the extra invariant for Rossby waves. Physica D, 223 , 109120.

  • Barry, L., G. Craig, and J. Thuburn, 2002: Poleward heat transport by the atmospheric heat engine. Nature, 415 , 774777.

  • Boer, G., 1983: Homogeneous and isotropic turbulence on the sphere. J. Atmos. Sci., 40 , 154163.

  • Boer, G., and T. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40 , 164184.

  • Bradshaw, P., 1973: Effects of streamline curvature on turbulent flow. AGARDograph Rep. 169, Advisory Group for Aerospace Research and Development, Paris, France, 128 pp.

  • Carnevale, G., and P. Martin, 1982: Field theoretical techniques in statistical fluid dynamics: With application to nonlinear wave dynamics. Geophys. Astrophys. Fluid Dyn., 20 , 131164.

    • Search Google Scholar
    • Export Citation
  • Chekhlov, A., S. Orszag, S. Sukoriansky, B. Galperin, and I. Staroselsky, 1996: The effect of small-scale forcing on large-scale structures in two-dimensional flows. Physica D, 98 , 321334.

    • Search Google Scholar
    • Export Citation
  • Cho, J-K., and L. Polvani, 1996: The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Phys. Fluids, 8 , 15311552.

    • Search Google Scholar
    • Export Citation
  • Danilov, S., and D. Gurarie, 2002: Rhines scale and spectra of the β-plane turbulence with bottom drag. Phys. Rev. E, 65 .doi:10.1103/PhysRevE.65.067301.

    • Search Google Scholar
    • Export Citation
  • Eden, C., 2006: Middepth equatorial tracer tongues in a model of the Atlantic Ocean. J. Geophys. Res., 111 .C12025, doi:10.1029/2006JC003565.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., and S. Sukoriansky, 2005: Energy spectra and zonal flows on the. β plane, on a rotating sphere, and on giant planets. Marine Turbulence: Theories, Observations, and Models, H. Baumert, J. Simpson, and J. Sündermann, Eds., Cambridge University Press, 472–493.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., S. Sukoriansky, and H-P. Huang, 2001: Universal n−5 spectrum of zonal flows on giant planets. Phys. Fluids, 13 , 15451548.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., H. Nakano, H-P. Huang, and S. Sukoriansky, 2004: The ubiquitous zonal jets in the atmospheres of giant planets and Earth’s oceans. Geophys. Res. Lett., 31 .L13303, doi:10.1029/2004GL019691.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., S. Sukoriansky, N. Dikovskaya, P. Read, Y. Yamazaki, and R. Wordsworth, 2006: Anisotropic turbulence and zonal jets in rotating flows with a β-effect. Nonlinear Proc. Geophys., 13 , 8398.

    • Search Google Scholar
    • Export Citation
  • Glazman, R., and B. Cheng, 1999: Altimeter observations of baroclinic oceanic inertia-gravity wave turbulence. Proc. Roy. Soc. London, 455 , 91123.

    • Search Google Scholar
    • Export Citation
  • Glazman, R., and P. Weichman, 2005: Meridional component of oceanic Rossby wave propagation. Dyn. Atmos. Oceans, 38 , 173193.

  • Held, I., 1999: The macroturbulence of the troposphere. Tellus, 51A , 5970.

  • Held, I., and V. Larichev, 1996: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53 , 946952.

    • Search Google Scholar
    • Export Citation
  • Hide, R., 1966: On the circulation of the atmospheres of Jupiter and Saturn. Planet. Space Sci., 14 , 669675.

  • Holloway, G., 1986: Considerations on the theory of temperature spectra in stably stratified turbulence. J. Phys. Oceanogr., 16 , 21792183.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., and M. Hendershott, 1977: Stochastic closure for nonlinear Rossby waves. J. Fluid Mech., 82 , 747765.

  • Huang, H-P., and W. Robinson, 1998: Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci., 55 , 611632.

    • Search Google Scholar
    • Export Citation
  • Huang, H-P., B. Galperin, and S. Sukoriansky, 2001: Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere. Phys. Fluids, 13 , 225240.

    • Search Google Scholar
    • Export Citation
  • James, I., 1987: Suppression of baroclinic instability in horizontally sheared flows. J. Atmos. Sci., 44 , 37103720.

  • James, I., and L. Gray, 1986: Concerning the effect of surface drag on the circulation of a baroclinic planetary atmosphere. Quart. J. Roy. Meteor. Soc., 112 , 12311250.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J., and J. Pedlosky, 2004: The instability of Rossby basin modes and the oceanic eddy field. J. Phys. Oceanogr., 34 , 20272041.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and I. Held, 2003: Diffusivity, kinetic energy dissipation, and closure theories for the poleward eddy heat flux. J. Atmos. Sci., 60 , 29072916.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1972: Numerical simulation study of two-dimensional turbulence. Geophys. Fluid Dyn., 3 , 289319.

  • Majda, A., and X. Wang, 2006: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press, 551 pp.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32 .L12607, doi:10.1029/2005GL022728.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M., 2001: Balance, potential-vorticity inversion, lighthill radiation, and the slow quasimanifold. IUTAM Symposium on Advances in Mathematical Modeling of Atmosphere and Ocean Dynamics, P. Hodnett, Ed., Kluwer Academic, 45–68.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J., 2006: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, 249 pp.

  • Miesch, M., 2003: Numerical modeling of the solar tachocline. II. Forced turbulence with imposed shear. Astrophys. J., 586 , 663684.

  • Müller, P., J. McWilliams, and M. Molemaker, 2005: Routes to dissipation in the ocean: The two-dimensional/three-dimensional turbulence conundrum. Marine Turbulence: Theories, Observations, and Models, H. Baumert, J. Simpson, and J. Sündermann, Eds., Cambridge University Press, 397–405.

    • Search Google Scholar
    • Export Citation
  • Nadiga, B., 2006: On zonal jets in oceans. Geophys. Res. Lett., 33 .L10601, doi:10.1029/2006GL025865.

  • Nakano, H., and H. Hasumi, 2005: A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr., 35 , 474488.

    • Search Google Scholar
    • Export Citation
  • Nof, D., S. Van Gorder, and T. Pichevin, 2004: A different outflow length scale? J. Phys. Oceanogr., 34 , 793804.

  • Nozawa, T., and S. Yoden, 1997: Formation of zonal band structure in forced two-dimensional turbulence on a rotating sphere. Phys. Fluids, 9 , 20812093.

    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., M. Lankhorst, D. Fratantoni, P. Richardson, and W. Zenk, 2006: Zonal intermediate currents in the equatorial Atlantic Ocean. Geophys. Res. Lett., 33 .L05605, doi:10.1029/2005GL025368.

    • Search Google Scholar
    • Export Citation
  • Panetta, R., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50 , 20732106.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1998: Ocean Circulation Theory. 2d ed. Springer, 453 pp.

  • Read, P., 2005: From mixing to geostrophy: Geostrophic turbulence in atmospheres, oceans, and the laboratory. Marine Turbulence: Theories, Observations, and Models, H. Baumert, J. Simpson, and J. Sündermann, Eds., Cambridge University Press, 406–422.

    • Search Google Scholar
    • Export Citation
  • Read, P., Y. Yamazaki, S. Lewis, P. Williams, K. Miki-Yamazaki, J. Sommeria, H. Didelle, and A. Fincham, 2004: Jupiter’s and Saturn’s convectively driven banded jets in the laboratory. Geophys. Res. Lett., 31 .L22701, doi:10.1029/2004GL020106.

    • Search Google Scholar
    • Export Citation
  • Read, P., Y. Yamazaki, S. Lewis, P. Williams, R. Wordsworth, K. Miki-Yamazaki, J. Sommeria, and H. Didelle, 2007: Dynamics of convectively driven banded jets in the laboratory. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69 , 417443.

  • Rhines, P., 1979: Geostrophic turbulence. Annu. Rev. Fluid Mech., 11 , 401411.

  • Richards, K., N. Maximenko, F. Bryan, and H. Sasaki, 2006: Zonal jets in the Pacific Ocean. Geophys. Res. Lett., 33 .L03605, doi:10.1029/2005GL024645.

    • Search Google Scholar
    • Export Citation
  • Rose, H., and P. Sulem, 1978: Fully developed turbulence and statistical mechanics. J. Phys., 39 , 441484.

  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61 , 13171340.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34 , 655688.

  • Smith, K., 2005: Tracer transport along and across coherent jets in two-dimensional turbulent flow. J. Fluid Mech., 544 , 133142.

  • Smith, K., G. Boccaletti, C. Henning, I. Marinov, C. Tam, I. Held, and G. Vallis, 2002: Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech., 469 , 1348.

    • Search Google Scholar
    • Export Citation
  • Smith, L., and V. Yakhot, 1993: Bose condensation and small-scale structure generation in a random force driven 2D turbulence. Phys. Rev. Lett., 71 , 352355.

    • Search Google Scholar
    • Export Citation
  • Smith, L., and V. Yakhot, 1994: Finite-size effects in forced two-dimensional turbulence. J. Fluid Mech., 274 , 115138.

  • Smith, L., and F. Waleffe, 1999: Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids, 11 , 16081622.

    • Search Google Scholar
    • Export Citation
  • Smith, L., and F. Waleffe, 2002: Generation of slow large scales in forced rotating stratified turbulence. J. Fluid Mech., 451 , 145168.

    • Search Google Scholar
    • Export Citation
  • Smith, L., and Y. Lee, 2005: On near resonances and symmetry breaking in forced rotating flows at moderate Rossby number. J. Fluid Mech., 535 , 111142.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and A. Chekhlov, 1999: Large scale drag representation in simulations of two-dimensional turbulence. Phys. Fluids, 11 , 30433053.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and N. Dikovskaya, 2002: Universal spectrum of two-dimensional turbulence on a rotating sphere and some basic features of atmospheric circulation on giant planets. Phys. Rev. Lett., 89 .doi:10.1103/PhysRevLett.89.124501.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and I. Staroselsky, 2005: A quasinormal scale elimination model of turbulent flows with stable stratification. Phys. Fluids, 17 .doi:10.1063/1.2009010.

    • Search Google Scholar
    • Export Citation
  • Vallis, G., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Vallis, G., and M. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23 , 13461362.

    • Search Google Scholar
    • Export Citation
  • Vasavada, A., and A. Showman, 2005: Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys., 68 , 19351996.

    • Search Google Scholar
    • Export Citation
  • Williams, G., 1975: Jupiter’s atmospheric circulation. Nature, 257 , 778.

  • Williams, G., 1978: Planetary circulations. Part I: Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci., 35 , 13991426.

    • Search Google Scholar
    • Export Citation
  • Zang, X., and C. Wunsch, 2001: Spectral description of low-frequency oceanic variability. J. Phys. Oceanogr., 31 , 30733095.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 901 284 13
PDF Downloads 731 168 10