Prediction and Diagnosis of Tropical Cyclone Formation in an NWP System. Part III: Diagnosis of Developing and Nondeveloping Storms

K. J. Tory Bureau of Meteorology Research Centre, Melbourne, Australia

Search for other papers by K. J. Tory in
Current site
Google Scholar
PubMed
Close
,
N. E. Davidson Bureau of Meteorology Research Centre, Melbourne, Australia

Search for other papers by N. E. Davidson in
Current site
Google Scholar
PubMed
Close
, and
M. T. Montgomery Department of Meteorology, Naval Postgraduate School, Monterey, California, and Hurricane Research Division, NOAA/AOML, Miami, Florida

Search for other papers by M. T. Montgomery in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This is the third of a three-part investigation into tropical cyclone (TC) genesis in the Australian Bureau of Meteorology’s Tropical Cyclone Limited Area Prediction System (TC-LAPS), an operational numerical weather prediction (NWP) forecast model. In Parts I and II, a primary and two secondary vortex enhancement mechanisms were illustrated, and shown to be responsible for TC genesis in a simulation of TC Chris. In this paper, five more TC-LAPS simulations are investigated: three developing and two nondeveloping. In each developing simulation the pathway to genesis was essentially the same as that reported in Part II. Potential vorticity (PV) cores developed through low- to middle-tropospheric vortex enhancement in model-resolved updraft cores (primary mechanism) and interacted to form larger cores through diabatic upscale vortex cascade (secondary mechanism). On the system scale, vortex intensification resulted from the large-scale mass redistribution forced by the upward mass flux, driven by diabatic heating, in the updraft cores (secondary mechanism). The nondeveloping cases illustrated that genesis can be hampered by (i) vertical wind shear, which may tilt and tear apart the PV cores as they develop, and (ii) an insufficient large-scale cyclonic environment, which may fail to sufficiently confine the warming and enhanced cyclonic winds, associated with the atmospheric adjustment to the convective updrafts.

The exact detail of the vortex interactions was found to be unimportant for qualitative genesis forecast success. Instead the critical ingredients were found to be sufficient net deep convection in a sufficiently cyclonic environment in which vertical shear was less than some destructive limit. The often-observed TC genesis pattern of convection convergence, where the active convective regions converge into a 100-km-diameter center, prior to an intense convective burst and development to tropical storm intensity is evident in the developing TC-LAPS simulations. The simulations presented in this study and numerous other simulations not yet reported on have shown good qualitative forecast success. Assuming such success continues in a more rigorous study (currently under way) it could be argued that TC genesis is largely predictable provided the large-scale environment (vorticity, vertical shear, and convective forcing) is sufficiently resolved and initialized.

Corresponding author address: Dr. Kevin Tory, Bureau of Meteorology Research Centre, GPO Box 1289, Melbourne, VIC 3001, Australia. Email: k.tory@bom.gov.au

Abstract

This is the third of a three-part investigation into tropical cyclone (TC) genesis in the Australian Bureau of Meteorology’s Tropical Cyclone Limited Area Prediction System (TC-LAPS), an operational numerical weather prediction (NWP) forecast model. In Parts I and II, a primary and two secondary vortex enhancement mechanisms were illustrated, and shown to be responsible for TC genesis in a simulation of TC Chris. In this paper, five more TC-LAPS simulations are investigated: three developing and two nondeveloping. In each developing simulation the pathway to genesis was essentially the same as that reported in Part II. Potential vorticity (PV) cores developed through low- to middle-tropospheric vortex enhancement in model-resolved updraft cores (primary mechanism) and interacted to form larger cores through diabatic upscale vortex cascade (secondary mechanism). On the system scale, vortex intensification resulted from the large-scale mass redistribution forced by the upward mass flux, driven by diabatic heating, in the updraft cores (secondary mechanism). The nondeveloping cases illustrated that genesis can be hampered by (i) vertical wind shear, which may tilt and tear apart the PV cores as they develop, and (ii) an insufficient large-scale cyclonic environment, which may fail to sufficiently confine the warming and enhanced cyclonic winds, associated with the atmospheric adjustment to the convective updrafts.

The exact detail of the vortex interactions was found to be unimportant for qualitative genesis forecast success. Instead the critical ingredients were found to be sufficient net deep convection in a sufficiently cyclonic environment in which vertical shear was less than some destructive limit. The often-observed TC genesis pattern of convection convergence, where the active convective regions converge into a 100-km-diameter center, prior to an intense convective burst and development to tropical storm intensity is evident in the developing TC-LAPS simulations. The simulations presented in this study and numerous other simulations not yet reported on have shown good qualitative forecast success. Assuming such success continues in a more rigorous study (currently under way) it could be argued that TC genesis is largely predictable provided the large-scale environment (vorticity, vertical shear, and convective forcing) is sufficiently resolved and initialized.

Corresponding author address: Dr. Kevin Tory, Bureau of Meteorology Research Centre, GPO Box 1289, Melbourne, VIC 3001, Australia. Email: k.tory@bom.gov.au

Save
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125 , 26622682.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of Tropical Cyclones. Meteor. Atmos. Phys., 67 , 3769.

  • Harr, P. A., R. L. Elsberry, and J. C. L. Chan, 1996: Transformation of a large monsoon depression to a tropical storm during TCM-93. Mon. Wea. Rev., 124 , 26252643.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78 , 21792196.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: On the role of “vortical” hot towers in hurricane formation. J. Atmos. Sci., 61 , 12091232.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121 , 821851.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., and R. E. Tuleya, 1981: A numerical simulation study on the genesis of a tropical storm. Mon. Wea. Rev., 109 , 16291653.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze, 1992: An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. I: Horizontal structure. Quart. J. Roy. Meteor. Soc., 118 , 927963.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze, 1995: Diabatic divergent profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52 , 18071828.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63 , 355386.

    • Search Google Scholar
    • Export Citation
  • Paterson, H., B. Hanstrum, N. E. Davidson, and H. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Wea. Rev., 133 , 36443660.

    • Search Google Scholar
    • Export Citation
  • Puri, K., G. S. Dietachmayer, G. A. Mills, N. E. Davidson, R. A. Bowen, and L. W. Logan, 1998: The new BMRC Limited Area Prediction System, LAPS. Aust. Meteor. Mag., 47 , 203223.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61 , 322.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev, 125 , 13771396.

  • Ritchie, E. A., J. Simpson, W. T. Liu, J. Halverson, C. S. Velden, K. F. Brueske, and H. Pierce, 2003: Present day satellite technology for hurricane research. Hurricane: Coping with Disaster, R. Simpson, Ed., Amer. Geophys. Union, 249–289.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., E. A. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125 , 26432661.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., M. T. Montgomery, and N. E. Davidson, 2006a: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection. J. Atmos. Sci., 63 , 30773090.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., M. T. Montgomery, N. E. Davidson, and J. D. Kepert, 2006b: Prediction and diagnosis of Tropical Cyclone formation in an NWP system. Part II: A detailed diagnosis of tropical cyclone Chris formation. J. Atmos. Sci., 63 , 30913113.

    • Search Google Scholar
    • Export Citation
  • Zehr, R., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp.

  • Zipser, E. J., and C. Gautier, 1978: Mesoscale events within a GATE tropical depression. Mon. Wea. Rev., 106 , 789805.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 273 115 2
PDF Downloads 179 66 1