Size Spectra of Snow Particles Measured in Wintertime Precipitation in the Pacific Northwest

Christopher P. Woods Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Christopher P. Woods in
Current site
Google Scholar
PubMed
Close
,
Mark T. Stoelinga Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Mark T. Stoelinga in
Current site
Google Scholar
PubMed
Close
, and
John D. Locatelli Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by John D. Locatelli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Particle size spectra collected by the University of Washington’s Convair-580 research aircraft at a variety of altitudes and temperatures in winter frontal and orographic precipitation systems during the Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE) are analyzed in this study. The particle size spectra generally appeared to conform to an exponential size distribution, with well-correlated linear fits between the log of the number concentration and particle diameter. When the particle size spectra were grouped according to the habit composition as determined from airborne imagery, significantly improved correlations between the size spectrum parameters and temperature were obtained. This result could potentially be exploited for specifying the size distribution in a single-moment bulk microphysical scheme, if particle habit is predicted by the scheme. Analyses of “spectral trajectories” suggest that the rime-splintering process was likely responsible for the presence of needle and column habit types and the positive shift in both N0s and λs at temperatures warmer than −10°C.

Corresponding author address: Mark T. Stoelinga, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: stoeling@atmos.washington.edu

Abstract

Particle size spectra collected by the University of Washington’s Convair-580 research aircraft at a variety of altitudes and temperatures in winter frontal and orographic precipitation systems during the Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE) are analyzed in this study. The particle size spectra generally appeared to conform to an exponential size distribution, with well-correlated linear fits between the log of the number concentration and particle diameter. When the particle size spectra were grouped according to the habit composition as determined from airborne imagery, significantly improved correlations between the size spectrum parameters and temperature were obtained. This result could potentially be exploited for specifying the size distribution in a single-moment bulk microphysical scheme, if particle habit is predicted by the scheme. Analyses of “spectral trajectories” suggest that the rime-splintering process was likely responsible for the presence of needle and column habit types and the positive shift in both N0s and λs at temperatures warmer than −10°C.

Corresponding author address: Mark T. Stoelinga, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: stoeling@atmos.washington.edu

Save
  • Bennetts, D., and P. Ryder, 1984: A study of mesoscale convective bands behind cold fronts. Part II: Cloud and microphysical structure. Quart. J. Roy. Meteor. Soc., 110 , 467487.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, A. V. Korolev, and J. W. Strapp, 2001: Assessing cloud-phase conditions. J. Appl. Meteor., 40 , 19671983.

  • Cotton, W. R., M. A. Stephens, T. Nehrkorn, and G. J. Tripoli, 1982: The Colorado State University three-dimensional cloud/mesoscale model. Part II: An ice phase parameterization. J. Rech. Atmos., 16 , 295319.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82 , 529.

  • Cunningham, R. M., 1978: Analysis of particle spectral data from optical array (PMS) 1-D and 2-D sensors. Preprints, Fourth Symp. on Meteorological Observations and Instrumentation, Denver, CO, Amer. Meteor. Soc., 345–350.

  • Evans, A. G., J. D. Locatelli, M. T. Stoelinga, and P. V. Hobbs, 2005: The IMPROVE-1 storm of 1–2 February 2001. Part II: Cloud structures and the growth of precipitation. J. Atmos. Sci., 62 , 34563473.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51 , 249280.

  • Field, P. R., 1999: Aircraft observations of ice crystal evolution in an altostratus cloud. J. Atmos. Sci., 56 , 19251941.

  • Field, P. R., and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60 , 544560.

  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131 , 19972017.

    • Search Google Scholar
    • Export Citation
  • Gordon, G. L., and J. D. Marwitz, 1986: Hydrometeor evolution in rainbands over the California valley. J. Atmos. Sci., 43 , 10871100.

  • Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Atmos. Sci., 15 , 452461.

  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249 , 2628.

  • Herzegh, P. H., and P. V. Hobbs, 1985: Size spectra of ice particles in frontal clouds: Correlations between spectrum shape and cloud conditions. Quart. J. Roy. Meteor. Soc., 111 , 463477.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. L. Parrish, 1978: A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer. J. Appl. Meteor., 17 , 15661572.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and M. Kajikawa, 1987: An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci., 44 , 10881099.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59 , 34573491.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze Jr., 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front. J. Atmos. Sci., 37 , 568596.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36 , 156162.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., and A. J. Heymsfield, 1989: Aggregation of ice crystals in cirrus. J. Atmos. Sci., 46 , 31083121.

  • Knollenberg, R. G., 1976: Three new instruments for cloud physics measurements: The 2-D spectrometer, the forward scattering spectrometer probe, and the active scattering aerosol spectrometer. Preprints, Int. Conf. on Cloud Physics, Boulder, CO, Amer. Meteor. Soc., 554–561.

  • Korolev, A., and B. Sussman, 2000: A technique for habit classification of cloud particles. J. Atmos. Oceanic Technol., 17 , 10481057.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and T. L. Jensen, 1998: Improved microphysical observations in mixed phase clouds. Preprints, Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 451–454.

  • Lawson, R. P., R. E. Stewart, J. W. Strapp, and G. A. Isaac, 1993: Aircraft observations of the origin and growth of very large snowflakes. Geophys. Res. Lett., 20 , 5356.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and R. E. Passarelli, 1982: The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39 , 697706.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • Lynn, B. H., A. P. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert, 2005: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part I: Model description and first results. Mon. Wea. Rev., 133 , 4458.

    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Ser. 7, 2 , 321335.

    • Search Google Scholar
    • Export Citation
  • Marecal, V., D. Hauser, and C. Duroure, 1993: Airborne microphysical measurements and radar reflectivity observations near a cold frontal rainband observed during the FRONTS 87 experiment. Atmos. Res., 29 , 179207.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Atmos. Sci., 5 , 165166.

  • McFarquhar, G. M., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61 , 422439.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., M. S. Timlin, R. Rauber, and B. Jewett, 2004: Observations of vertical variability of cloud hydrometeors in stratiform regions behind bow echoes: Implications for downdraft formation. Preprints, 14th Int. Conf. on Clouds and Precipitation, Bologna, Italy, International Association of Meteorology and Atmospheric Sciences, 592–595.

  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62 , 30653081.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1988: Evolution of snow-size spectra in cyclonic storms. Part I: Snow growth by vapor deposition and aggregation. J. Atmos. Sci., 45 , 34313451.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29 , 153163.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1978: Some factors governing ice particle multiplication in cumulus clouds. J. Atmos. Sci., 35 , 20332037.

  • Passarelli, R. E., 1978: Theoretical and observational study of snow-size spectra and snowflake aggregation efficiencies. J. Atmos. Sci., 35 , 882889.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1997: A parameterization of the visible extinction coefficient of ice clouds in terms of the ice/water content. J. Atmos. Sci., 54 , 20832098.

    • Search Google Scholar
    • Export Citation
  • Potter, B. E., 1991: Improvements to a commonly used cloud microphysical bulk parameterization. J. Appl. Meteor., 30 , 10401042.

  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., 1996: On the global variation of precipitating layer clouds. Bull. Amer. Meteor. Soc., 77 , 5370.

  • Ryan, B. F., 2000: A bulk parameterization of the ice particle size distribution and the optical properties in ice clouds. J. Atmos. Sci., 57 , 14361451.

    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivastava, 1970: Snow size spectra and radar reflectivity. J. Atmos. Sci., 27 , 299307.

  • Stewart, R. E., J. D. Marwitz, J. C. Pace, and R. E. Carbone, 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 41 , 32273237.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., and Coauthors, 2003: Improvement of microphysical parameterization through observational verification experiment. Bull. Amer. Meteor. Soc., 84 , 18071826.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., J. D. Locatelli, and C. P. Woods, 2007: The occurrence of “irregular” ice particles in stratiform clouds. J. Atmos. Sci., 64 , 27402750.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and E. R. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44 , 445466.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Search Google Scholar
    • Export Citation
  • Woods, C. P., M. T. Stoelinga, and J. D. Locatelli, 2007: The IMPROVE-1 storm of 1–2 February 2001. Part III: Sensitivity of a mesoscale model simulation to the representation of snow particle types and testing of a bulk microphysical scheme with snow habit prediction. J. Atmos. Sci., 64 , 39273948.

    • Search Google Scholar
    • Export Citation
  • You, L., and Y. Liu, 1989: The synoptic structures and microphysical processes of precipitation systems in winter in Wulumuqi area, Xingjang. Proc. Fifth WMO Science Conf. on Weather Modification and Applied Cloud Physics, WMP Rep. 12, Beijing, China, WMO, 65–68.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 575 162 45
PDF Downloads 356 116 10