• Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17 , 24932525.

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single-column tests using GATE wave, BOMEX, ATEX and arctic air-mass datasets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46 , 740759.

    • Search Google Scholar
    • Export Citation
  • Bright, D. R., and S. L. Mullen, 2002: Short-range ensemble forecasts of precipitation during the southwest monsoon. Wea. Forecasting, 17 , 10801100.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., 1997: Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF ensemble prediction system. Mon. Wea. Rev., 125 , 99119.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133 , 10761096.

    • Search Google Scholar
    • Export Citation
  • Cohen, B. G., 2001: Fluctuations in an ensemble of cumulus clouds. Ph.D. thesis, University of Reading, 165 pp.

  • Cohen, B. G., and G. C. Craig, 2004: The response time of a convective cloud ensemble to a change in forcing. Quart. J. Roy. Meteor. Soc., 130 , 933944.

    • Search Google Scholar
    • Export Citation
  • Cohen, B. G., and G. C. Craig, 2006: Fluctuations in an equilibrium convective ensemble. Part II: Numerical experiments. J. Atmos. Sci., 63 , 20052015.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and B. G. Cohen, 2006: Fluctuations in an equilibrium convective ensemble. Part I: Theoretical formulation. J. Atmos. Sci., 63 , 19962004.

    • Search Google Scholar
    • Export Citation
  • Cullen, M. J. P., 1993: The unified forecast/climate model. Meteor. Mag., 122 , 8994.

  • Done, J. M., G. C. Craig, S. L. Gray, P. A. Clark, and M. E. B. Gray, 2006: Mesoscale simulations of organized convection: Importance of convective equilibrium. Quart. J. Roy. Meteor. Soc., 132 , 737756.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., 1993: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci., 50 , 889906.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., and M. Bister, 1996: Moist convective velocity and buoyancy scales. J. Atmos. Sci., 53 , 32763285.

  • Evans, R. E., M. S. J. Harrison, R. J. Graham, and K. R. Mylne, 2000: Joint medium-range ensembles from the Met Office and ECMWF systems. Mon. Wea. Rev., 128 , 31043127.

    • Search Google Scholar
    • Export Citation
  • Ewald, B., C. Penland, and R. Temam, 2004: Accurate integration of stochastic climate models with application to El Niño. Mon. Wea. Rev., 132 , 154164.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and C. Cohen, 1985: Properties of tropical cloud ensembles estimated using a cloud model and an observed updraft population. J. Atmos. Sci., 42 , 19111928.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37 , 17221733.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and A. R. Brown, 1999: A similarity hypothesis for shallow-cumulus transports. Quart. J. Roy. Meteor. Soc., 125 , 19131936.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118 , 14831506.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130 , 31393172.

    • Search Google Scholar
    • Export Citation
  • Hermanson, L., 2006: Stochastic physics: A comparative study of parameterized temperature tendencies in a global atmospheric model. Ph.D. thesis, University of Reading, 145 pp.

  • Horinouchi, T., and Coauthors, 2003: Tropical cumulus convection and upward-propagating waves in middle-atmospheric GCMs. J. Atmos. Sci., 60 , 27652782.

    • Search Google Scholar
    • Export Citation
  • Hou, D., E. Kalnay, and K. K. Droegemeier, 2001: Objective verification of the SAMEX ’98 ensemble forecasts. Mon. Wea. Rev., 129 , 7391.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124 , 12251242.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43 , 170181.

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization in mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., M. E. Baldwin, and S. J. Weiss, 2003: Parameterized updraft mass flux as a predictor of convective intensity. Wea. Forecasting, 18 , 106116.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., A. J. Majda, and A. Katsoulakis, 2003: Coarse grained stochastic models for tropical convection and climate. Proc. Natl. Acad. Sci. USA, 100 , 1194111946.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63 , 18951909.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. J. Atmos. Sci., 37 , 24442457.

    • Search Google Scholar
    • Export Citation
  • Lennard, R., 2004: The distribution of cumulus cloud sizes. M.S. thesis, Department of Meteorology, University of Reading, 67 pp.

  • Lin, J. W-B., and J. D. Neelin, 2000: Influence of a stochastic moist convective parameterization on tropical climate variability. Geophys. Res. Lett., 27 , 36913694.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W-B., and J. D. Neelin, 2002: Considerations for stochastic convective parameterization. J. Atmos. Sci., 59 , 959975.

  • Lin, J. W-B., and J. D. Neelin, 2003: Toward stochastic deep convective parameterization in general circulation models. Geophys. Res. Lett., 30 .1162, doi:10.1029/2002GL016203.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and B. Khouider, 2002: Stochastic and mesoscopic models for tropical convection. Proc. Natl. Acad. Sci. USA, 99 , 11231128.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1997: Equilibrium vs. activation control of large-scale variations of tropical deep convection. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., Kluwer Academic, 321–358.

    • Search Google Scholar
    • Export Citation
  • Mylne, K. R., R. E. Evans, and R. T. Clark, 2002: Multi-model multi-analysis ensembles in quasi-operational medium-range forecasting. Quart. J. Roy. Meteor. Soc., 128 , 361384.

    • Search Google Scholar
    • Export Citation
  • Nober, F. J., 2003: Development of a convective cloud field model based upon principles of self-organization. Ph.D. thesis, University of Hamburg, 109 pp.

  • Ooyama, K., 1971: A theory on parameterization of cumulus convection. J. Meteor. Soc. Japan, 49 , 744756.

  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic–dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127 , 279304.

    • Search Google Scholar
    • Export Citation
  • Penland, C., 2003: A stochastic approach to nonlinear dynamics: A review. Bull. Amer. Meteor. Soc., 84 , ES43ES52.

  • Peters, O., and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nature Phys., 2 , 393396.

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in Fortran 77: The Art of Scientific Computing. 2nd ed. Cambridge University Press, 934 pp.

    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and R. R. Garcia, 2000: The excitation of equatorial waves by deep convection in the NCAR Community Climate Model (CCM3). J. Atmos. Sci., 57 , 34613487.

    • Search Google Scholar
    • Export Citation
  • Robe, F. R., and K. A. Emanuel, 1996: Moist convective scaling: Some inferences from three-dimensional cloud ensemble simulations. J. Atmos. Sci., 53 , 32663275.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., and M. E. B. Gray, 1999: Numerical simulations of convective equilibrium under prescribed forcing. Quart. J. Roy. Meteor. Soc., 125 , 27672787.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116 , 435460.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., and A. Williams, 2000: Surface and boundary layer processes. Met Office Tech. Rep., Unified Model Documentation Paper 24, model version 4.5, 118 pp.

  • Smith, R. N. B., D. Gregory, J. F. B. Mitchell, A. C. Bushell, and D. R. Wilson, 1998: Large-scale precipitation. Met Office Tech. Rep., Unified Model Documentation Paper 26, model version 4.5, 38 pp.

  • Stensrud, D. J., J-W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128 , 20772107.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and C. A. Reynolds, 2008: Stochastic nature of physical parameterizations in ensemble prediction: A stochastic convection approach. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2005: Effects of stochastic parameterizations in the Lorenz ’96 system. Quart. J. Roy. Meteor. Soc., 131 , 389407.

  • Williams, P. D., 2006: Modelling climate change: The role of unresolved processes. Philos. Trans. Roy. Soc. London, 363 , 29312946.

  • Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK meteorological office unified model. Quart. J. Roy. Meteor. Soc., 125 , 16071636.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., A. Arakawa, and S. K. Krueger, 1992: The macroscopic behavior of cumulus ensembles simulated by a cumulus ensemble model. J. Atmos. Sci., 49 , 24022420.

    • Search Google Scholar
    • Export Citation
  • Yang, Z. W., and R. W. Arritt, 2002: Tests of a perturbed physics ensemble approach for regional climate modeling. J. Climate, 15 , 28812896.

    • Search Google Scholar
    • Export Citation
  • Yano, J-I., K. Fraedrich, and R. Blender, 2001: Tropical convective variability as 1/f noise. J. Climate, 14 , 36083616.

  • Yano, J-I., R. Blender, C. Zhang, and K. Fraedrich, 2004a: 1/f noise and pulse-like events in the tropical atmospheric surface variabilities. Quart. J. Roy. Meteor. Soc., 130 , 16971721.

    • Search Google Scholar
    • Export Citation
  • Yano, J-I., F. Guichard, J-P. Lafore, J-L. Redelsperger, and P. Bechtold, 2004b: Estimations of mass fluxes for cumulus parameterizations from high-resolution spatial data. J. Atmos. Sci., 61 , 829842.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60 , 11731185.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 510 304 19
PDF Downloads 402 220 16

A Stochastic Parameterization for Deep Convection Based on Equilibrium Statistics

View More View Less
  • 1 Joint Centre for Mesoscale Meteorology, University of Reading, Reading, United Kingdom
  • | 2 Institut für Physik der Atmosphäre, DLR, Wessling, Germany
Restricted access

Abstract

A stochastic parameterization scheme for deep convection is described, suitable for use in both climate and NWP models. Theoretical arguments and the results of cloud-resolving models are discussed in order to motivate the form of the scheme. In the deterministic limit, it tends to a spectrum of entraining/detraining plumes and is similar to other current parameterizations. The stochastic variability describes the local fluctuations about a large-scale equilibrium state. Plumes are drawn at random from a probability distribution function (PDF) that defines the chance of finding a plume of given cloud-base mass flux within each model grid box. The normalization of the PDF is given by the ensemble-mean mass flux, and this is computed with a CAPE closure method. The characteristics of each plume produced are determined using an adaptation of the plume model from the Kain–Fritsch parameterization. Initial tests in the single-column version of the Unified Model verify that the scheme is effective in producing the desired distributions of convective variability without adversely affecting the mean state.

Corresponding author address: R. S. Plant, Department of Meteorology, University of Reading, P.O. Box 243, Reading, Berkshire RG6 2BB, United Kingdom. Email: r.s.plant@rdg.ac.uk

Abstract

A stochastic parameterization scheme for deep convection is described, suitable for use in both climate and NWP models. Theoretical arguments and the results of cloud-resolving models are discussed in order to motivate the form of the scheme. In the deterministic limit, it tends to a spectrum of entraining/detraining plumes and is similar to other current parameterizations. The stochastic variability describes the local fluctuations about a large-scale equilibrium state. Plumes are drawn at random from a probability distribution function (PDF) that defines the chance of finding a plume of given cloud-base mass flux within each model grid box. The normalization of the PDF is given by the ensemble-mean mass flux, and this is computed with a CAPE closure method. The characteristics of each plume produced are determined using an adaptation of the plume model from the Kain–Fritsch parameterization. Initial tests in the single-column version of the Unified Model verify that the scheme is effective in producing the desired distributions of convective variability without adversely affecting the mean state.

Corresponding author address: R. S. Plant, Department of Meteorology, University of Reading, P.O. Box 243, Reading, Berkshire RG6 2BB, United Kingdom. Email: r.s.plant@rdg.ac.uk

Save