A Thermal Plume Model for the Convective Boundary Layer: Representation of Cumulus Clouds

Catherine Rio Laboratoire de Météorologie Dynamique du CNRS, IPSL, Paris, France

Search for other papers by Catherine Rio in
Current site
Google Scholar
PubMed
Close
and
Frédéric Hourdin Laboratoire de Météorologie Dynamique du CNRS, IPSL, Paris, France

Search for other papers by Frédéric Hourdin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The “thermal plume model,” a mass-flux scheme combined with a classical diffusive approach, originally developed to represent turbulent transport in the dry convective boundary layer, is extended here to the representation of cloud processes. The modified parameterization is validated in a 1D configuration against results of large eddy simulations (LES), as well as in a 3D configuration against in situ measurements, for a series of cases of dry and cloudy convective boundary layers. Accounting for coherent structures of the mixed layer with the mass-flux scheme improves the representation of the diurnal cycle of the boundary layer, particularly its progressive deepening during the day and the associated near-surface drying. Results also underline the role of the prescription of the mixing of air between the plume and its environment, and of submean-plume fluctuations.

Corresponding author address: Catherine Rio, Laboratoire de Météorologie Dynamique, UPMC, Tour 45-55, 3ème étage, BP-99, Jussieu, 4 place Jussieu, 75 005 Paris, France. Email: catherine.rio@lmd.jussieu.fr

Abstract

The “thermal plume model,” a mass-flux scheme combined with a classical diffusive approach, originally developed to represent turbulent transport in the dry convective boundary layer, is extended here to the representation of cloud processes. The modified parameterization is validated in a 1D configuration against results of large eddy simulations (LES), as well as in a 3D configuration against in situ measurements, for a series of cases of dry and cloudy convective boundary layers. Accounting for coherent structures of the mixed layer with the mass-flux scheme improves the representation of the diurnal cycle of the boundary layer, particularly its progressive deepening during the day and the associated near-surface drying. Results also underline the role of the prescription of the mixing of air between the plume and its environment, and of submean-plume fluctuations.

Corresponding author address: Catherine Rio, Laboratoire de Météorologie Dynamique, UPMC, Tour 45-55, 3ème étage, BP-99, Jussieu, 4 place Jussieu, 75 005 Paris, France. Email: catherine.rio@lmd.jussieu.fr

Save
  • Abdella, K., and N. McFarlane, 1997: A new second-order turbulence closure scheme for the planetary boundary layers. J. Atmos. Sci., 54 , 18501867.

    • Search Google Scholar
    • Export Citation
  • Alapaty, K., J. E. Pleim, S. Raman, D. S. Niyogi, and D. W. Byun, 1997: Simulation of atmospheric boundary layer processes using local- and nonlocal-closure schemes. J. Appl. Meteor., 36 , 214233.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1979: A model of the thermodynamic structure of the trade-wind boundary layer: Part II. Applications. J. Atmos. Sci., 36 , 9098.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Ayotte, K. W., and Coauthors, 1996: An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations. Bound.-Layer Meteor., 79 , 131175.

    • Search Google Scholar
    • Export Citation
  • Betts, A., 1973: Non-precipitating convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99 , 178196.

  • Blyth, A., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32 , 626641.

  • Bony, S., and K. A. Emanuel, 2001: A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA COARE data. J. Atmos. Sci., 58 , 31583183.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19 , 34453482.

  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46 , 740759.

    • Search Google Scholar
    • Export Citation
  • Brown, A., and Coauthors, 2002: Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quart. J. Roy. Meteor. Soc., 128 , 10751093.

    • Search Google Scholar
    • Export Citation
  • Chatfield, R. B., and R. A. Brost, 1987: A two-stream model of the vertical transport of trace species in the convective boundary layer. J. Geophys. Res., 92 , 1326313276.

    • Search Google Scholar
    • Export Citation
  • Coindreau, O., F. Hourdin, M. Haeffelin, A. Mathieu, and C. Rio, 2007: Assessment of physical parameterizations using a global climate model with stretchable grid and nudging. Mon. Wea. Rev., 135 , 14741489.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Theoretical expression for the countergradient vertical heat flux. J. Geophys. Res., 77 , 59005904.

  • Dufresne, J-L., J. Quaas, O. Boucher, S. Denvil, and L. Fairhead, 2005: Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20th and the 21st century. Geophys. Res. Lett., 32 .L21703, doi:10.1029/2005GL023619.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48 , 23132335.

  • Emanuel, K. A., 1993: A cumulus representation based on the episodic mixing model: The importance of mixing and microphysics in predicting humidity. The Representation of Cumulus Convection in Numerical Models of the Atmosphere, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 185–192.

    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., and B. Bonnel, 1980: Computations of solar heating of the Earth’s atmosphere: A new parametrization. Contrib. Atmos. Phys., 53 , 3562.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J-Y., V. Phillips, and R. Tailleux, 2004: Improved mixing representation in Emanuel’s convection scheme. Quart. J. Roy. Meteor. Soc., 130 , 32073222.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130 , 31393172.

    • Search Google Scholar
    • Export Citation
  • Haeffelin, M., and Coauthors, 2005: SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann. Geophys., 23 , 253275.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6 , 18251842.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., F. Couvreux, and L. Menut, 2002: Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J. Atmos. Sci., 59 , 11051123.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27 , 787813.

    • Search Google Scholar
    • Export Citation
  • Lappen, C-L., and D. Randall, 2001a: Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model. J. Atmos. Sci., 58 , 20212036.

    • Search Google Scholar
    • Export Citation
  • Lappen, C-L., and D. Randall, 2001b: Toward a unified parameterization of the boundary layer and moist convection. Part II: Lateral mass exchanges and subplume-scale fluxes. J. Atmos. Sci., 58 , 20372051.

    • Search Google Scholar
    • Export Citation
  • Lappen, C-L., and D. Randall, 2001c: Toward a unified parameterization of the boundary layer and moist convection. Part III: Simulations of clear and cloudy convection. J. Atmos. Sci., 58 , 20522072.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and Coauthors, 2004: The diurnal cycle of shallow cumulus clouds over land: A single column model intercomparison study. Quart. J. Roy. Meteor. Soc., 130 , 33393364.

    • Search Google Scholar
    • Export Citation
  • Lilly, D., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94 , 292309.

  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31 , 17911806.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51 , 9991022.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J. J., L. Smith, and Y. Fouquart, 1986: Pressure and temperature dependence of the absorption in longwave radiation parameterizations. Contrib. Atmos. Phys., 59 , 455469.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., A. P. Siebesma, and H. J. J. Jonker, 2002: A multiparcel model for shallow cumulus convection. J. Atmos. Sci., 59 , 16551668.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and J. S. Chang, 1992: A non-local closure model for vertical mixing in the convective boundary layer. Atmos. Environ., 26A , 965981.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Q. Shao, and C-H. Moeng, 1992: A second-order bulk boundary-layer model. J. Atmos. Sci., 49 , 19031923.

  • Raymond, D. J., and A. M. Blyth, 1986: A stochastic model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43 , 27082718.

  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52 , 650666.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and A. A. M. Holtslag, 1996: Model impacts of entrainment and detrainment rates in shallow cumulus convection. J. Atmos. Sci., 53 , 23542364.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60 , 12011219.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64 , 12301248.

    • Search Google Scholar
    • Export Citation
  • Soares, P. M. M., P. M. A. Miranda, A. P. Siebesma, and J. Teixeira, 2004: An eddy-diffusivity/mass-flux parameterization for dry and shallow cumulus convection. Quart. J. Roy. Meteor. Soc., 130 , 33653383.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2007: On the growth of layers of nonprecipitating cumulus convection. J. Atmos. Sci., 64 , 29162931.

  • Stull, R. B., 1984: Transilient turbulence theory. Part I: The concept of eddy-mixing across finite distances. J. Atmos. Sci., 41 , 33513367.

    • Search Google Scholar
    • Export Citation
  • Suarez, M., A. Arakawa, and D. Randall, 1983: The parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Mon. Wea. Rev., 111 , 22242243.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37 , 129148.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and B. A. Albrecht, 1990: A mean-gradient model of the dry convective boundary layer. J. Atmos. Sci., 47 , 126138.

  • Yamada, T., 1983: Simulations of nocturnal drainage flows by a q2 l turbulence closure model. J. Atmos. Sci., 40 , 91106.

  • Yanai, M., S. Esbensen, and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110 .D15S02, doi:10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2003: Episodic mixing and buoyancy-sorting representations of shallow convection: A diagnostic study. J. Atmos. Sci., 60 , 892912.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005a: Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport. J. Atmos. Sci., 62 , 12691290.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005b: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62 , 12911310.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1303 420 114
PDF Downloads 835 190 14