Aerosol–Cloud Interactions in a Mesoscale Model. Part II: Sensitivity to Aqueous-Phase Chemistry

Irena T. Ivanova Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Irena T. Ivanova in
Current site
Google Scholar
PubMed
Close
and
Henry G. Leighton Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Henry G. Leighton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The feedbacks between aerosols, cloud microphysics, and cloud chemistry are investigated in a mesoscale model. A simple bulk aqueous-phase sulfur chemistry scheme was fully coupled to the existing aerosol and microphysics schemes. The representation of aerosol and microphysics follows the explicit bulk double-moment approach. A case of summertime stratocumulus cloud system is simulated at high resolution (3-km grid spacing), and the evolution of an observed continental aerosol spectrum that changes during the course of the simulation as a result of cloud processing is examined.

The results demonstrate that the bulk approach to the aerosol and droplet spectra correctly represents the feedbacks in the coupled system. The simulations capture the characteristic bimodal aerosol size spectrum resulting from cloud processing, with the first mode consisting of particles that did not participate as cloud condensation nuclei and the second mode, in the region of 0.08–0.12-μm radii, comprising the particles that were affected by processing. New information is revealed about the impact of the two main processing pathways and about the spatial distribution of the processed aerosol. One cycle of physical processing produced a relatively modest impact of 3%–5% on the processed particle mean radius of the order that was comparable to the impact of chemical processing, while continuous physical recycling produced a much larger impact as high as 30%–50%. A strong constraint on the chemical processing was found to be the initial chemistry input and the assumption of bulk chemical composition. Simple tests with a more slowly depleting primary oxidant (H2O2) and including the droplet chemical heterogeneity effect favor stronger sulfate production, by, respectively, the H2O2 and O3 oxidation reaction, and both show a larger impact on the processed particle mean radius of similar magnitude, 10%–20%. Spatially, the impact of processing is found initially in the downdraft regions below cloud and at later times at substantial distances downwind. It is shown that cloud processing can either enhance or suppress the number of activated drops in subsequent cycles.

Corresponding author address: Irena Ivanova, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada. Email: irena@zephyr.meteo.mcgill.ca

Abstract

The feedbacks between aerosols, cloud microphysics, and cloud chemistry are investigated in a mesoscale model. A simple bulk aqueous-phase sulfur chemistry scheme was fully coupled to the existing aerosol and microphysics schemes. The representation of aerosol and microphysics follows the explicit bulk double-moment approach. A case of summertime stratocumulus cloud system is simulated at high resolution (3-km grid spacing), and the evolution of an observed continental aerosol spectrum that changes during the course of the simulation as a result of cloud processing is examined.

The results demonstrate that the bulk approach to the aerosol and droplet spectra correctly represents the feedbacks in the coupled system. The simulations capture the characteristic bimodal aerosol size spectrum resulting from cloud processing, with the first mode consisting of particles that did not participate as cloud condensation nuclei and the second mode, in the region of 0.08–0.12-μm radii, comprising the particles that were affected by processing. New information is revealed about the impact of the two main processing pathways and about the spatial distribution of the processed aerosol. One cycle of physical processing produced a relatively modest impact of 3%–5% on the processed particle mean radius of the order that was comparable to the impact of chemical processing, while continuous physical recycling produced a much larger impact as high as 30%–50%. A strong constraint on the chemical processing was found to be the initial chemistry input and the assumption of bulk chemical composition. Simple tests with a more slowly depleting primary oxidant (H2O2) and including the droplet chemical heterogeneity effect favor stronger sulfate production, by, respectively, the H2O2 and O3 oxidation reaction, and both show a larger impact on the processed particle mean radius of similar magnitude, 10%–20%. Spatially, the impact of processing is found initially in the downdraft regions below cloud and at later times at substantial distances downwind. It is shown that cloud processing can either enhance or suppress the number of activated drops in subsequent cycles.

Corresponding author address: Irena Ivanova, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada. Email: irena@zephyr.meteo.mcgill.ca

Save
  • Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation. Part II: Multiple aerosol types. J. Geophys. Res., 105 , 68376844.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., J. Côté, and J. Mailhot, 1989: Inclusion of a TKE boundary layer parameterization in the Canadian regional finite-element model. Mon. Wea. Rev., 117 , 17261750.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., M. Desgagne, P. Pellerin, S. Pellerin, and Y. Chartier, 1997: The Canadian MC2: A semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation. Mon. Wea. Rev., 125 , 23822415.

    • Search Google Scholar
    • Export Citation
  • Bower, K. N., and T. W. Choularton, 1993: Cloud processing of the cloud condensation nucleus spectrum and its climatological consequences. Quart. J. Roy. Meteor. Soc., 119 , 655679.

    • Search Google Scholar
    • Export Citation
  • Chameides, W. L., 1984: The photochemistry of a remote marine stratiform cloud. J. Geophys. Res., 89 , 47394755.

  • Cohard, J-M., and J-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126 , 18151842.

    • Search Google Scholar
    • Export Citation
  • Collett Jr., J. L., A. Bator, X. Rao, and B. B. Demoz, 1994: Acidity variations across the cloud drop size spectrum and their influence on rates of atmospheric sulfate production. Geophys. Res. Lett., 21 , 23932396.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and S. M. Kreidenweis, 2000: Does cloud processing of aerosol enhance droplet concentrations? J. Geophys. Res., 105 , 2435124362.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and S. M. Kreidenweis, 2002: Cloud processing of aerosol as modeled by a large eddy simulation with coupled microphysics and aqueous chemistry. J. Geophys. Res., 107 .4687, doi:10.1029/2002JD002054.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., S. M. Kreidenweis, B. Stevens, and W. R. Cotton, 1996: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision-coalescence. J. Geophys. Res., 101 , 2139121402.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., S. M. Kreidenweis, and Y. Zhang, 1998: Stratocumulus processing of gases and cloud condensation nuclei. 1: Trajectory ensemble model. J. Geophys. Res., 103 , 1952719542.

    • Search Google Scholar
    • Export Citation
  • Flossmann, A. I., 1994: A 2-D spectral model simulation of the scavenging of gaseous and particulate sulfate by a warm marine cloud. Atmos. Res., 32 , 233248.

    • Search Google Scholar
    • Export Citation
  • Flossmann, A. I., W. D. Hall, and H. R. Pruppacher, 1985: A theoretical study of the wet removal of atmospheric pollutants. Part I: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops. J. Atmos. Sci., 42 , 583606.

    • Search Google Scholar
    • Export Citation
  • Garand, L., and J. Mailhot, 1990: The influence of infrared radiation on numerical weather forecasts. Preprints, Seventh Conf. of Atmospheric Radiation, San Francisco, CA, Amer. Meteor. Soc., J146–J151.

  • Garrett, T. J., and P. V. Hobbs, 1995: Long-range transport of continental aerosols over the Atlantic Ocean and their effects on cloud structures. J. Atmos. Sci., 52 , 29772984.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., G. Guzman, and H. Abdul-Razzak, 1998: Competition between sea salt and sulfate particles as cloud condensation nuclei. J. Atmos. Sci., 55 , 33403347.

    • Search Google Scholar
    • Export Citation
  • Gurciullo, C. S., and S. N. Pandis, 1997: Effect of composition variations in cloud droplet populations on aqueous chemistry. J. Geophys. Res., 102 , 93759385.

    • Search Google Scholar
    • Export Citation
  • Hatzianastassiou, N., W. Wobrock, and A. I. Flossmann, 1998: The effect of cloud-processing of aerosol particles on clouds and radiation. Tellus, 50B , 478490.

    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., and P. V. Hobbs, 1982: Measurement of sulfate production in natural clouds. Atmos. Environ., 16 , 26632668.

  • Hegg, D. A., and T. V. Larson, 1990: The effect of microphysical parameterization on model predictions of sulfate production in clouds. Tellus, 42B , 272284.

    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., L. F. Radke, and P. V. Hobbs, 1990: Particles production associated with marine clouds. J. Geophys. Res., 95 , 1391713926.

    • Search Google Scholar
    • Export Citation
  • Hoffman, M. R., and J. G. Calvert, 1985: Chemical transformation modules for Eulerian acid deposition models. Vol. II, The aqueous-phase chemistry, NCAR, Boulder, CO, 155 pp.

  • Hoppel, W. A., J. W. Fitzgerald, G. M. Frick, and R. E. Larson, 1990: Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean. J. Geophys. Res., 95 , 36593686.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., 1993: Cloud condensation nuclei near marine cumulus. J. Geophys. Res., 98 , 26932702.

  • Isaac, G. A., and Coauthors, 1998: Vertical profiles and horizontal transport of atmospheric aerosols and trace gases over central Ontario. J. Geophys. Res., 103 , 2201522038.

    • Search Google Scholar
    • Export Citation
  • Ivanova, I. T., and H. G. Leighton, 2008: Aerosol–cloud interactions in a mesoscale model. Part I: Sensitivity to activation and collision–coalescence. J. Atmos. Sci., 65 , 289308.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–177.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., D. K. Lilly, Z. N. Kogan, and V. V. Vilyushkin, 1994: The effect of CCN regeneration on the evolution of stratocumulus layers. Atmos. Res., 33 , 137150.

    • Search Google Scholar
    • Export Citation
  • Kong, F-Y., and M. K. Yau, 1997: An explicit approach of microphysics in MC2. Atmos.–Ocean, 35 , 257291.

  • Kreidenweis, S. M., and Coauthors, 2003: Modification of aerosol mass and size distribution due to aqueous-phase SO2 oxidation in clouds: Comparison of several models. J. Geophys. Res., 108 .4213, doi:10.1029/2002JD002697.

    • Search Google Scholar
    • Export Citation
  • Liu, P. S. K., W. R. Leaitch, A. M. Macdonald, G. A. Isaac, J. W. Strapp, and H. A. Weibe, 1993: Sulfate production in summer cloud over Ontario. Tellus, 45B , 368390.

    • Search Google Scholar
    • Export Citation
  • Liu, P. S. K., W. R. Leaitch, C. M. Banic, S-M. Li, and D. Ngo, 1996: Aerosol observations at Chebogue Point during the 1993 North Atlantic Regional Experiment: Relationships among cloud condensation nuclei, size distributions, and chemistry. J. Geophys. Res., 101 , 2897128990.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 1995: Changes to the Canadian regional forecast system: Description and evaluation of the 50-km version. Atmos.–Ocean, 33 , 5580.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 1998: Scientific description of RPN physics library—version 3.6. Atmospheric Environment Service Tech. Rep., Dorval, QC, Canada, 188 pp.

  • Mcdonald, A. M., K. G. Anlauf, C. M. Banic, W. R. Leaitch, and H. A. Wiebe, 1995: Airborne measurements of aqueous and gaseous hydrogen peroxide during spring and summer in Ontario, Canada. J. Geophys. Res., 100 , 72537262.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62 , 30513064.

    • Search Google Scholar
    • Export Citation
  • Mitra, S. K., J. Brinkmann, and H. T. Pruppacher, 1992: A wind tunnel study on the drop-to-particle conversion. J. Aerosol Sci., 23 , 245256.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., J. A. Lowe, and M. H. Smith, 1999a: Observational and modeling of aerosol growth in marine stratocumulus—Case study. Atmos. Environ., 33 , 30533062.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., J. A. Lowe, M. H. Smith, and A. D. Kaye, 1999b: The relative importance of non-sea-salt sulphate and sea-salt aerosol to the marine cloud condensation nuclei population: An improved multi-component aerosol-cloud droplet parametrization. Quart. J. Roy. Meteor. Soc., 125 , 12951313.

    • Search Google Scholar
    • Export Citation
  • Penkett, S. A., B. M. R. Jones, K. A. Brice, and A. E. J. Eggleton, 1979: The importance of atmospheric ozone and hydrogen peroxide in oxidizing sulfur dioxide in cloud and rainwater. Atmos. Environ., 13 , 123137.

    • Search Google Scholar
    • Export Citation
  • Robert, A., T. L. Yee, and H. Ritchie, 1985: A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models. Mon. Wea. Rev., 113 , 388394.

    • Search Google Scholar
    • Export Citation
  • Roelofs, G. J. H., 1993: A cloud chemistry sensitivity study and comparison of explicit and bulk cloud model performance. Atmos. Environ., 27A , 22552264.

    • Search Google Scholar
    • Export Citation
  • Rupakheti, M., and Coauthors, 2005: An intensive study of the size and composition of submicron atmospheric aerosols at a rural site in Ontario, Canada. Aerosol Sci. Technol., 39 , 722736.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., G. Vali, K. Comstock, R. Wood, M. C. van zanten, P. H. Austin, C. S. Bretherthon, and D. H. Lenschow, 2005: Pockets of open cells (POCs) and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86 , 5157.

    • Search Google Scholar
    • Export Citation
  • Tanguay, M., A. Robert, and R. Laprise, 1990: A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Wea. Rev., 118 , 19701980.

    • Search Google Scholar
    • Export Citation
  • Tremblay, A., and H. G. Leighton, 1986: A three-dimensional cloud chemistry model. J. Climate Appl. Meteor., 25 , 652671.

  • Wurzler, S., T. G. Reisin, and Z. Levin, 2000: Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions. J. Geophys. Res., 105 , 45014512.

    • Search Google Scholar
    • Export Citation
  • Yuen, P-F., D. A. Hegg, T. V. Larson, and M. C. Barth, 1996: Parameterization of heterogeneous chemistry for use in bulk cloud models. J. Appl. Meteor., 35 , 679689.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. M. Kreidenweis, and G. Feingold, 1999: Stratocumulus processing of gases and cloud condensation nuclei. 2: Chemistry sensitivity analysis. J. Geophys. Res., 104 , 1606116080.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 219 114 21
PDF Downloads 134 85 4