A Comparison of Statistical Dynamical and Ensemble Prediction Methods during Blocking

Terence J. O’Kane CSIRO Marine and Atmospheric Research, Aspendale, Australia

Search for other papers by Terence J. O’Kane in
Current site
Google Scholar
PubMed
Close
and
Jorgen S. Frederiksen CSIRO Marine and Atmospheric Research, Aspendale, Australia

Search for other papers by Jorgen S. Frederiksen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper error growth is examined using a family of inhomogeneous statistical closure models based on the quasi-diagonal direct interaction approximation (QDIA), and the results are compared with those based on ensembles of direct numerical simulations using bred perturbations. The closure model herein includes contributions from non-Gaussian terms, is realizable, and conserves kinetic energy and enstrophy. Further, unlike previous approximations, such as those based on cumulant-discard (CD) and quasi-normal (QN) hypotheses (Epstein and Fleming), the QDIA closure is stable for long integration times and is valid for both strongly non-Gaussian and strongly inhomogeneous flows. The performance of a number of variants of the closure model, incorporating different approximations to the higher-order cumulants, is examined. The roles of non-Gaussian initial perturbations and small-scale noise in determining error growth are examined. The importance of the cumulative contribution of non-Gaussian terms to the evolved error tendency is demonstrated, as well as the role of the off-diagonal covariances in the growth of errors. Cumulative and instantaneous errors are quantified using kinetic energy spectra and a small-scale palinstrophy production measure, respectively. As a severe test of the methodology herein, synoptic situations during a rapid regime transition associated with the formation of a block over the Gulf of Alaska are considered. In general, the full QDIA closure results compare well with the statistics of direct numerical simulations.

* Current affiliation: Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Australia

Corresponding author address: Terence J. O’Kane, CAWCR, Bureau of Meteorology, 700 Collins St., Docklands 3008, Australia. Email: t.okane@bom.gov.au

Abstract

In this paper error growth is examined using a family of inhomogeneous statistical closure models based on the quasi-diagonal direct interaction approximation (QDIA), and the results are compared with those based on ensembles of direct numerical simulations using bred perturbations. The closure model herein includes contributions from non-Gaussian terms, is realizable, and conserves kinetic energy and enstrophy. Further, unlike previous approximations, such as those based on cumulant-discard (CD) and quasi-normal (QN) hypotheses (Epstein and Fleming), the QDIA closure is stable for long integration times and is valid for both strongly non-Gaussian and strongly inhomogeneous flows. The performance of a number of variants of the closure model, incorporating different approximations to the higher-order cumulants, is examined. The roles of non-Gaussian initial perturbations and small-scale noise in determining error growth are examined. The importance of the cumulative contribution of non-Gaussian terms to the evolved error tendency is demonstrated, as well as the role of the off-diagonal covariances in the growth of errors. Cumulative and instantaneous errors are quantified using kinetic energy spectra and a small-scale palinstrophy production measure, respectively. As a severe test of the methodology herein, synoptic situations during a rapid regime transition associated with the formation of a block over the Gulf of Alaska are considered. In general, the full QDIA closure results compare well with the statistics of direct numerical simulations.

* Current affiliation: Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Australia

Corresponding author address: Terence J. O’Kane, CAWCR, Bureau of Meteorology, 700 Collins St., Docklands 3008, Australia. Email: t.okane@bom.gov.au

Save
  • Anderson, J. L., 1996: A method for producing and evaluating probalistic forecasts from ensemble model integrations. J. Climate, 9 , 15181530.

    • Search Google Scholar
    • Export Citation
  • Bowman, J. C., J. A. Krommes, and M. Ottaviani, 1993: The realizable Markovian closure. I: General theory, with applications to 3-wave dynamics. Phys. Fluids B, 5 , 35583589.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and F. Molteni, 1996: The role of finite-time barotropic instability during transition to blocking. J. Atmos. Sci., 53 , 16751697.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1966: The feasibility of a global observation and analysis experiment. Bull. Amer. Meteor. Soc., 47 , 200220.

  • Denholm-Price, J. C. W., 2003: Can an ensemble give anything more than Gaussian probabilities? Nonlinear Processes Geophys., 10 , 469475.

    • Search Google Scholar
    • Export Citation
  • de Pondeca, M. S. F. V., A. Barcilon, and X. Zou, 1998a: An adjoint sensitivity study of the efficacy of modal and nonmodal perturbations in causing model block onset. J. Atmos. Sci., 55 , 20952118.

    • Search Google Scholar
    • Export Citation
  • de Pondeca, M. S. F. V., A. Barcilon, and X. Zou, 1998b: The role of wave breaking, linear instability, and PV transports in model block onset. J. Atmos. Sci., 55 , 28522872.

    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969a: The role of initial uncertainties in prediction. J. Appl. Meteor., 8 , 190198.

  • Epstein, E. S., 1969b: Stochastic dynamic prediction. Tellus, 21 , 739759.

  • Epstein, E. S., and E. J. Pitcher, 1972: Stochastic analysis of meteorological fields. J. Atmos. Sci., 29 , 244257.

  • Farrell, B. F., 1989: Optimal excitation of baroclinic waves. J. Atmos. Sci., 46 , 11931206.

  • Fleming, R. J., 1971a: On stochastic dynamic prediction. I: The energetics of uncertainty and the question of closure. Mon. Wea. Rev., 99 , 851872.

    • Search Google Scholar
    • Export Citation
  • Fleming, R. J., 1971b: On stochastic dynamic prediction. II: Predictability and utility. Mon. Wea. Rev., 99 , 927938.

  • Frederiksen, J. S., 1983: A unified three-dimensional instability theory of the onset of blocking and cyclogensis. II: Teleconnection patterns. J. Atmos. Sci., 40 , 25932609.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 1998: Precursors to blocking anomalies: The tangent linear and inverse problems. J. Atmos. Sci., 55 , 24192436.

  • Frederiksen, J. S., 1999: Subgrid-scale parameterizations of eddy-topographic force, eddy viscosity, and stochastic backscatter for flow over topography. J. Atmos. Sci., 56 , 14811494.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 2000: Singular vectors, finite-time normal modes, and error growth during blocking. J. Atmos. Sci., 57 , 312333.

  • Frederiksen, J. S., and R. C. Bell, 1990: North Atlantic blocking during January 1979: Linear theory. Quart. J. Roy. Meteor. Soc., 116 , 12891313.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and A. G. Davies, 1997: Eddy viscosity and stochastic backscatter parameterizations on the sphere for atmospheric circulation models. J. Atmos. Sci., 54 , 24752492.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and A. G. Davies, 2000: Dynamics and spectra of cumulant update closures for two-dimensional turbulence. Geophys. Astrophys. Fluid Dyn., 92 , 197231.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and A. G. Davies, 2004: The regularized DIA closure for two-dimensional turbulence. Geophys. Astrophys. Fluid Dyn., 98 , 203223.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and T. J. O’Kane, 2005: Inhomogeneous closure and statistical mechanics for Rossby wave turbulence over topography. J. Fluid Mech., 539 , 137165.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., A. G. Davies, and R. C. Bell, 1994: Closure theories with non-Gaussian restarts for truncated two-dimensional turbulence. Phys. Fluids, 6 , 31533163.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., M. R. Dix, and S. M. Kepert, 1996: Systematic energy errors and the tendency toward canonical equilibrium in atmospheric circulation models. J. Atmos. Sci., 53 , 887904.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., M. A. Collier, and A. B. Watkins, 2004: Ensemble prediction of blocking regime transitions. Tellus, 56A , 485500.

  • Herring, J. R., 1965: Self-consistent-field approach to turbulence theory. Phys. Fluids, 8 , 22192225.

  • Herring, J. R., J. J. Riley, G. S. Patterson Jr., and R. H. Kraichnan, 1973: Growth of uncertainty in decaying isotropic turbulence. J. Atmos. Sci., 30 , 9971006.

    • Search Google Scholar
    • Export Citation
  • Herring, J. R., S. A. Orszag, R. H. Kraichnan, and D. G. Fox, 1974: Decay of two-dimensional homogeneous turbulence. J. Fluid Mech., 66 , 417444.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and J. Derome, 1995: Methods for ensemble prediction. Mon. Wea. Rev., 123 , 21812196.

  • Kasahara, A., 1972: Simulation experiments for meteorological observing systems for GARP. Bull. Amer. Meteor. Soc., 53 , 252264.

  • Kiyani, K., and W. D. McComb, 2004: Time-ordered fluctuation-dissipation relation for incompressible isotropic turbulence. Phys. Rev. E, 70 .doi:10.1103/PhysRevE.70.066303.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., and A. Majda, 2005: Predictability in a model of geophysical turbulence. J. Atmos. Sci., 62 , 28642879.

  • Kraichnan, R. H., 1959: The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech., 5 , 497543.

  • Kraichnan, R. H., 1964: Kolmogorov’s hypothesis and Eulerian turbulence theory. Phys. Fluids, 7 , 17231734.

  • Kraichnan, R. H., 1972: Test-field model for inhomogeneous turbulence. J. Fluid Mech., 56 , 287304.

  • Leith, C. E., 1971: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci., 28 , 145161.

  • Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102 , 409418.

  • Leith, C. E., and R. H. Kraichnan, 1972: Predictability of turbulent flows. J. Atmos. Sci., 29 , 10411058.

  • Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17 , 321333.

  • Martin, P. C., E. D. Siggia, and H. A. Rose, 1973: Statistical dynamics of classical systems. Phys. Rev. A, 8 , 423437.

  • McComb, W. D., 1974: A local energy-transfer theory of isotropic turbulence. J. Phys. A, 7 , 632649.

  • McComb, W. D., and V. Shanmugasundaram, 1984: Numerical calculations of decaying isotropic turbulence using the LET theory. J. Fluid Mech., 143 , 95123.

    • Search Google Scholar
    • Export Citation
  • Métais, O., and M. Lesieur, 1986: Statistical predictability of decaying turbulence. J. Atmos. Sci., 43 , 857870.

  • Miller, R. N., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci., 51 , 10371056.

    • Search Google Scholar
    • Export Citation
  • Millionshtchikov, M., 1941: On the theory of homogeneous isotropic turbulence. C. R. Dokl. Acad. Sci. USSR, 32 , 615618.

  • Molteni, F., and T. Palmer, 1993: Predictability and finite-time instability of the northern winter circulation. Quart. J. Meteor. Soc., 119 , 268298.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Meteor. Soc., 122 , 73119.

    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., 2003: The statistical dynamics of geophysical flows: An investigation of two-dimensional turbulent flow over topography. Ph.D. thesis. , Monash University, 211 pp.

    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., and J. S. Frederiksen, 2004: The QDIA and regularized QDIA closures for inhomogeneous turbulence over topography. J. Fluid Mech., 504 , 133165.

    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1970: Analytical theories of turbulence. J. Fluid Mech., 41 , 363386.

  • Pitcher, E. J., 1977: Application of stochastic dynamic prediction to real data. J. Atmos. Sci., 34 , 321.

  • Pouquet, A., M. A. Lesieur, and J. C. Basdevant, 1975: Evolution of high Reynolds number two-dimensional turbulence. J. Fluid Mech., 72 , 305319.

    • Search Google Scholar
    • Export Citation
  • Proudman, I., and W. H. Reid, 1954: On the decay of a normally distributed and homogeneous turbulent vector field. Philos. Trans. Roy. Soc. London, A247 , 163189.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1969: Problems and promises of deterministic extended range forecasting. Bull. Amer. Meteor. Soc., 50 , 286311.

  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 23172330.

  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Tracton, M. S., and E. Kalnay, 1993: Operational ensemble prediction at National Meteorological Center: Practical aspects. Wea. Forecasting, 8 , 379398.

    • Search Google Scholar
    • Export Citation
  • Veyre, P., 1991: Direct prediction of error variances by the tangent linear model: A way to forecast uncertainty in the short range? Proc. ECMWF Workshop on New Developments in Predictability, Reading, United Kingdom, ECMWF, 65–86.

  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60 , 11401158.

    • Search Google Scholar
    • Export Citation
  • Wei, M., and J. S. Frederiksen, 2004: Error growth and dynamical vectors during Southern Hemisphere blocking. Nonlinear Processes Geophys., 11 , 99118.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, Y. Zhu, C. H. Bishop, and X. Wang, 2006: Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus, 58A , 2844.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 154 74 2
PDF Downloads 63 18 0