Impact of the Atmospheric Boundary Layer on Mountain Waves

Qingfang Jiang University Corporation for Atmospheric Research, Monterey, California

Search for other papers by Qingfang Jiang in
Current site
Google Scholar
PubMed
Close
,
Ronald B. Smith Yale University, New Haven, Connecticut

Search for other papers by Ronald B. Smith in
Current site
Google Scholar
PubMed
Close
, and
James D. Doyle Naval Research Laboratory, Monterey, California

Search for other papers by James D. Doyle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Interaction between mountain waves and the atmospheric boundary layer (BL) has been investigated using a mesoscale model with BL parameterizations and analytical BL models. The impact of the BL diagnosed from the mesoscale model simulations is in qualitative agreement with the analytical BL models. In general, for stratified flow over a mesoscale ridge, the influence of the BL tends to shift wave patterns upstream, decrease the wave drag by up to 60% and the momentum flux above the BL top by up to 80%, and significantly delay the onset of wave breaking.

It has been demonstrated that the BL effect is governed by four nondimensional parameters, namely, the nondimensional BL depth, BL shape factor, nonhydrostatic parameter, and frictional adjustment parameter. The BL effect is stronger over a rougher surface, which creates a deeper BL with a smaller shape factor (i.e., slower BL flow). The scale dependence of the BL effect is governed by the nonhydrostatic and frictional adjustment parameters. For narrow terrain, the BL reduces mountain drag through rapid inertial adjustment and behaves like an inviscid shear layer, and the momentum reduction across the BL is negligible. The attenuation of the momentum flux across the BL is more substantial over a wider ridge because of the increasing importance of frictional adjustment. The BL effect decreases with increasing ridge height and for 3D terrain.

Corresponding author address: Qingfang Jiang, UCAR Visiting Scientist, Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 93940-5502. Email: qingfang.jiang@nrlmry.navy.mil

Abstract

Interaction between mountain waves and the atmospheric boundary layer (BL) has been investigated using a mesoscale model with BL parameterizations and analytical BL models. The impact of the BL diagnosed from the mesoscale model simulations is in qualitative agreement with the analytical BL models. In general, for stratified flow over a mesoscale ridge, the influence of the BL tends to shift wave patterns upstream, decrease the wave drag by up to 60% and the momentum flux above the BL top by up to 80%, and significantly delay the onset of wave breaking.

It has been demonstrated that the BL effect is governed by four nondimensional parameters, namely, the nondimensional BL depth, BL shape factor, nonhydrostatic parameter, and frictional adjustment parameter. The BL effect is stronger over a rougher surface, which creates a deeper BL with a smaller shape factor (i.e., slower BL flow). The scale dependence of the BL effect is governed by the nonhydrostatic and frictional adjustment parameters. For narrow terrain, the BL reduces mountain drag through rapid inertial adjustment and behaves like an inviscid shear layer, and the momentum reduction across the BL is negligible. The attenuation of the momentum flux across the BL is more substantial over a wider ridge because of the increasing importance of frictional adjustment. The BL effect decreases with increasing ridge height and for 3D terrain.

Corresponding author address: Qingfang Jiang, UCAR Visiting Scientist, Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 93940-5502. Email: qingfang.jiang@nrlmry.navy.mil

Save
  • Allen, T., and A. R. Brown, 2002: Large-eddy simulation of turbulent separated flow over rough hills. Bound.-Layer Meteor., 102 , 177198.

    • Search Google Scholar
    • Export Citation
  • Athanassiadou, M., and I. P. Castro, 2001: Neutral flow over a series of rough hills: A laboratory experiment. Bound.-Layer Meteor., 101 , 130.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and N. Wood, 1996: Form and wave drag due to stably stratified turbulent flow over low ridges. Quart. J. Roy. Meteor. Soc., 122 , 863902.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2001: The MAP Special Observing Period. Bull. Amer. Meteor. Soc., 82 , 433462.

  • Brown, A. R., and N. Wood, 2001: Turbulent form drag on anisotropic three-dimensional orography. Bound.-Layer Meteor., 101 , 229241.

  • Brown, A. R., and N. Wood, 2003: Properties and parameterization of stable boundary layer over moderate topography. J. Atmos. Sci., 60 , 27972808.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., J. M. Hobson, and N. Wood, 2001: Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Bound.-Layer Meteor., 98 , 411441.

    • Search Google Scholar
    • Export Citation
  • Ding, L., R. J. Calhoun, and R. L. Street, 2003: Numerical simulation of strongly stratified flow over a three-dimensional hill. Bound.-Layer Meteor., 107 , 81114.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and D. R. Durran, 2002: The dynamics of mountain-wave-induced rotors. J. Atmos. Sci., 59 , 186201.

  • Doyle, J. D., M. A. Shapiro, Q. Jiang, and D. Bartels, 2005: Large-amplitude mountain wave breaking over Greenland. J. Atmos. Sci., 62 , 31063126.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22 , 123.

  • Grisogono, B., 1994: Dissipation of wave drag in the atmospheric boundary layer. J. Atmos. Sci., 51 , 12371243.

  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125 , 14141430.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., R. Richards, and P. W. M. Brighton, 1988: Stably stratified shear flow over low hills. Quart. J. Roy. Meteor. Soc., 114 , 14351470.

    • Search Google Scholar
    • Export Citation
  • Jackson, P. S., and J. C. R. Hunt, 1975: Turbulent wind flow over a low hill. Quart. J. Roy. Meteor. Soc., 101 , 929955.

  • Jiang, Q., J. D. Doyle, and R. B. Smith, 2005: Blocking, descent and gravity waves: Observations and modelling of a MAP northerly föhn event. Quart. J. Roy. Meteor. Soc., 131 , 675701.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., J. D. Doyle, and R. B. Smith, 2006: Interaction between trapped waves and boundary layers. J. Atmos. Sci., 63 , 617633.

  • Jiang, Q., J. D. Doyle, S. Wang, and R. B. Smith, 2007: On boundary layer separation in the lee of mesoscale terrain. J. Atmos. Sci., 64 , 401420.

    • Search Google Scholar
    • Export Citation
  • Kim, Y., S. D. Eckermann, and H. Y. Chun, 2003: A view of past, present, and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmos.–Ocean, 41 , 6598.

    • Search Google Scholar
    • Export Citation
  • Lettau, H., 1962: Theoretical wind spirals in the boundary layer of a barotropic atmosphere. Beitr. Phys. Atmos., 35 , 195212.

  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Louis, J. F., M. Tiedtke, and J. F. Geleyn, 1982: A short history of the operational PBL-parameterization at ECMWF. Proc. Workshop on Planetary Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, 59–79.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31 , 17911806.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., and G. Chimonas, 1992: Wave exchange between the ground surface and a boundary-layer critical level. J. Atmos. Sci., 49 , 10751091.

    • Search Google Scholar
    • Export Citation
  • Ólafsson, H., and P. Bougeault, 1997: The effect of rotation and surface friction on orographic drag. J. Atmos. Sci., 54 , 193210.

  • Peng, S., and W. T. Thompson, 2003: Some aspects of the effect of surface friction on flows over mountains. Quart. J. Roy. Meteor. Soc., 129 , 25272557.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., C. S. Bretherton, and J. Molinari, 2006: Dynamics of the intertropical convergence zone of the east Pacific. J. Atmos. Sci., 63 , 582597.

    • Search Google Scholar
    • Export Citation
  • Richard, E., P. Mascart, and E. C. Nickerson, 1989: The role of surface friction in downslope windstorms. J. Appl. Meteor., 28 , 241251.

    • Search Google Scholar
    • Export Citation
  • Schlichting, H., K. Gersten, and C. Mayes, 2000: Boundary-Layer Theory. Springer-Verlag, 822 pp.

  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75 , 4156.

  • Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32 , 348364.

  • Smith, R. B., 2007: Interacting mountain waves and boundary layers. J. Atmos. Sci., 64 , 594607.

  • Smith, R. B., S. Skubis, J. D. Doyle, A. S. Broad, C. Kiemle, and H. Volkert, 2002: Mountain waves over Mont Blanc: Influence of a stagnant boundary layer. J. Atmos. Sci., 59 , 20732092.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., Q. Jiang, and J. D. Doyle, 2006: A theory of gravity wave absorption by boundary layers. J. Atmos. Sci., 63 , 774780.

  • Stevens, B., 2006: Bulk boundary-layer concepts for simplified models of tropical dynamics. Theor. Comput. Fluid Dyn., 20 , 279304.

  • Stevens, B., J. Duan, J. C. McWilliams, M. Münnich, and J. D. Neelin, 2002: Entrainment, Rayleigh friction, and boundary layer winds over the tropical Pacific. J. Climate, 15 , 3044.

    • Search Google Scholar
    • Export Citation
  • Therry, G., and P. Lacarrere, 1983: Improving the eddy kinetic energy model for planetary boundary layer description. Bound.-Layer Meteor., 25 , 6368.

    • Search Google Scholar
    • Export Citation
  • Thompson, W. T., and S. D. Burk, 1991: An investigation of an Arctic front with a vertically nested mesoscale model. Mon. Wea. Rev., 119 , 233261.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., 2004: Inversion effects on mountain lee waves. Quart. J. Roy. Meteor. Soc., 130 , 17231748.

  • Vosper, S. B., S. D. Mobbs, and B. A. Gardiner, 2002: Measurements of the near-surface flow over a hill. Quart. J. Roy. Meteor. Soc., 128 , 22572280.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., P. F. Sheridan, and A. R. Brown, 2006: Flow separation and rotor formation beneath two-dimensional trapped lee waves. Quart. J. Roy. Meteor. Soc., 132 , 24152438.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 210 70 4
PDF Downloads 118 38 3