Growth of Cloud Droplets by Turbulent Collision–Coalescence

Yan Xue Department of Mechanical Engineering, University of Delaware, Newark, Delaware

Search for other papers by Yan Xue in
Current site
Google Scholar
PubMed
Close
,
Lian-Ping Wang Department of Mechanical Engineering, University of Delaware, Newark, Delaware

Search for other papers by Lian-Ping Wang in
Current site
Google Scholar
PubMed
Close
, and
Wojciech W. Grabowski Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Wojciech W. Grabowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An open question in cloud physics is how rain forms in warm cumulus as rapidly as it is sometimes observed. In particular, the growth of cloud droplets across the size gap from 10 to 50 μm in radius has not been fully explained. In this paper, the authors investigate the growth of cloud droplets by collision–coalescence, taking into account both the gravitational mechanism and several enhancements of the collision–coalescence rate due to air turbulence. The kinetic collection equation (KCE) is solved with an accurate bin integral method and a newly developed parameterization of turbulent collection kernel derived from direct numerical simulation of droplet-laden turbulent flows. Three other formulations of the turbulent collection kernel are also considered so as to assess the dependence of the rain initiation time on the nature of the collection kernel. The results are compared to the base case using the Hall hydrodynamical–gravitational collection kernel. Under liquid water content and eddy dissipation rate values typical of small cumulus clouds, it is found that air turbulence has a significant impact on the collection kernel and thus on the time required to form drizzle drops. With the most realistic turbulent kernel, the air turbulence can shorten the time for the formation of drizzle drops by about 40% relative to the base case, applying measures based on either the radar reflectivity or the mass-weighted drop size. A methodology is also developed to unambiguously identify the three phases of droplet growth, namely, the autoconversion phase, the accretion phase, and the larger hydrometeor self-collection phase. The important observation is that even a moderate enhancement of collection kernel by turbulence can have a significant impact on the autoconversion phase of the growth.

Corresponding author address: Lian-Ping Wang, Department of Mechanical Engineering, 126 Spencer Laboratory, University of Delaware, Newark, DE 19716-3140. Email: lwang@udel.edu

Abstract

An open question in cloud physics is how rain forms in warm cumulus as rapidly as it is sometimes observed. In particular, the growth of cloud droplets across the size gap from 10 to 50 μm in radius has not been fully explained. In this paper, the authors investigate the growth of cloud droplets by collision–coalescence, taking into account both the gravitational mechanism and several enhancements of the collision–coalescence rate due to air turbulence. The kinetic collection equation (KCE) is solved with an accurate bin integral method and a newly developed parameterization of turbulent collection kernel derived from direct numerical simulation of droplet-laden turbulent flows. Three other formulations of the turbulent collection kernel are also considered so as to assess the dependence of the rain initiation time on the nature of the collection kernel. The results are compared to the base case using the Hall hydrodynamical–gravitational collection kernel. Under liquid water content and eddy dissipation rate values typical of small cumulus clouds, it is found that air turbulence has a significant impact on the collection kernel and thus on the time required to form drizzle drops. With the most realistic turbulent kernel, the air turbulence can shorten the time for the formation of drizzle drops by about 40% relative to the base case, applying measures based on either the radar reflectivity or the mass-weighted drop size. A methodology is also developed to unambiguously identify the three phases of droplet growth, namely, the autoconversion phase, the accretion phase, and the larger hydrometeor self-collection phase. The important observation is that even a moderate enhancement of collection kernel by turbulence can have a significant impact on the autoconversion phase of the growth.

Corresponding author address: Lian-Ping Wang, Department of Mechanical Engineering, 126 Spencer Laboratory, University of Delaware, Newark, DE 19716-3140. Email: lwang@udel.edu

Save
  • Arenberg, D., 1939: Turbulence as a major factor in the growth of cloud droplets. Bull. Amer. Meteor. Soc., 20 , 444445.

  • Ayala, O., 2005: Effects of turbulence on the collision rate of cloud droplets. Ph.D. dissertation, University of Delaware, 236 pp.

  • Ayala, O., L-P. Wang, and W. W. Grabowski, 2007: A hybrid approach for simulating turbulent collisions of hydrodynamically-interacting particles. J. Comput. Phys., 225 , 5173.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and H. T. Ochs III, 1993: Warm-rain initiation: An overview of microphysical mechanisms. J. Appl. Meteor., 32 , 608625.

  • Berry, E. X., and R. I. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci., 31 , 18141824.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., S. G. Lasher-Trapp, W. A. Cooper, C. A. Knight, and J. Latham, 2003: The role of giant and ultragiant nuclei in the formation of early radar echoes in warm cumulus clouds. J. Atmos. Sci., 60 , 25572572.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55 , 22842293.

  • Brenguier, J-L., and W. W. Grabowski, 1993: Cumulus entrainment and cloud droplet spectra: A numerical model within a two-dimensional dynamical framework. J. Atmos. Sci., 50 , 120136.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J-L., T. Bourrianne, A. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, 1998: Improvements of the droplet size distribution measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe). J. Atmos. Oceanic Technol., 15 , 10771090.

    • Search Google Scholar
    • Export Citation
  • Chaumat, L., and J-L. Brenguier, 1998: Droplet spectra broadening and concentration inhomogeneities. Preprints, Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 514–517.

  • Chun, J., D. L. Koch, S. L. Rani, A. Ahluwalia, and L. R. Collins, 2005: Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech., 536 , 219251.

    • Search Google Scholar
    • Export Citation
  • Clift, R., J. R. Grace, and M. E. Weber, 1978: Bubbles, Drops, and Particles. Academic Press, 380 pp.

  • Dávila, J., and J. C. R. Hunt, 2001: Settling of small particles near vortices and in turbulence. J. Fluid Mech., 440 , 117145.

  • de Almeida, F. C., 1976: The collisional problem of cloud droplets moving in a turbulent environment—Part I: A method of solution. J. Atmos. Sci., 33 , 15711578.

    • Search Google Scholar
    • Export Citation
  • de Almeida, F. C., 1979: The collisional problem of cloud droplets moving in a turbulent environment—Part II: Turbulent collision efficiencies. J. Atmos. Sci., 36 , 15641576.

    • Search Google Scholar
    • Export Citation
  • Dodin, Z., and T. Elperin, 2002: On the collision rate of particles in turbulent flow with gravity. Phys. Fluids, 14 , 29212924.

  • East, T. W. R., and J. S. Marshall, 1954: Turbulence in clouds as a factor in precipitation. Quart. J. Roy. Meteor. Soc., 80 , 2647.

  • Falkovich, G., A. Fouxon, and M. G. Stepanov, 2002: Acceleration of rain initiation by cloud turbulence. Nature, 419 , 151154.

  • Franklin, C. N., P. A. Vaillancourt, M. K. Yau, and P. Bartello, 2005: Collision rates of cloud droplets in turbulent flow. J. Atmos. Sci., 62 , 24512466.

    • Search Google Scholar
    • Export Citation
  • Furumoto, J., K. Kurimoto, and T. Tsuda, 2003: Continuous observations of humidity profiles with the MU radar–RASS combined with GPS and radiosonde measurements. J. Atmos. Oceanic Technol., 20 , 2341.

    • Search Google Scholar
    • Export Citation
  • Gabilly, A., 1949: On the role that turbulence can play in the coalescence of cloud droplets. Ann. Geophys., 5 , 232234.

  • Ghosh, S., and P. R. Jonas, 2001: Some analytical calculations on the effect of turbulence on the settling and growth of cloud droplets. Geophys. Res. Lett., 28 , 38833886.

    • Search Google Scholar
    • Export Citation
  • Ghosh, S., J. Dávila, J. C. R. Hunt, A. Srdic, H. J. S. Fernando, and P. Jonas, 2005: How turbulence enhances coalescence of settling particles with applications to rain in clouds. Proc. Roy. Soc. London, 461A , 30593088.

    • Search Google Scholar
    • Export Citation
  • Gillespie, D. T., 1972: The stochastic coalescence model for cloud droplet growth. J. Atmos. Sci., 29 , 14961510.

  • Gillespie, D. T., 1975: Three models for the coalescence growth of cloud drops. J. Atmos. Sci., 32 , 600607.

  • Grabowski, W. W., and P. Vaillancourt, 1999: Comments on “Preferential concentration of clouds droplets by turbulence: Effects on the early evolution of cumulus cloud droplet spectra”. J. Atmos. Sci., 56 , 14331436.

    • Search Google Scholar
    • Export Citation
  • Grover, S. N., and H. R. Pruppacher, 1985: The effect of vertical turbulent fluctuations in the atmosphere on the collection of aerosol particles by cloud drops. J. Atmos. Sci., 42 , 23052318.

    • Search Google Scholar
    • Export Citation
  • Hall, W. D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37 , 24862507.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and A. B. Kostinski, 2000: Fluctuation properties of precipitation. Part VI: Observations of hyperfine clustering and drop size distribution structures in three-dimensional rain. J. Atmos. Sci., 57 , 373388.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39 , 448460.

  • Khain, A., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55 , 159224.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., J. Vivekanandan, and S. G. Lasher-Trapp, 2002: First radar echoes and the early ZDR history of Florida cumulus. J. Atmos. Sci., 59 , 14541472.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 1993: Drop size separation in numerically simulated convective clouds and its effect on warm rain formation. J. Atmos. Sci., 50 , 12381253.

    • Search Google Scholar
    • Export Citation
  • Kostinski, A. B., and R. A. Shaw, 2001: Scale-dependent droplet clustering in turbulent clouds. J. Fluid Mech., 434 , 389398.

  • Kostinski, A. B., and R. A. Shaw, 2005: Fluctuations and luck in droplet growth by coalescence. Bull. Amer. Meteor. Soc., 86 , 235244.

    • Search Google Scholar
    • Export Citation
  • Koziol, A. S., and H. G. Leighton, 1996: The effect of turbulence on the collision rates of small cloud drops. J. Atmos. Sci., 53 , 19101920.

    • Search Google Scholar
    • Export Citation
  • Kruis, F. E., and K. A. Kusters, 1997: The collision rate of particles in turbulent flow. Chem. Eng. Commun., 58 , 201230.

  • Langmuir, I., 1948: The production of rain by a chain reaction in cumulus clouds at temperatures above freezing. J. Atmos. Sci., 5 , 175192.

    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S. G., W. A. Cooper, and A. M. Blyth, 2005: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131 , 195220.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., and A. P. Khain, 1997: Turbulence effects on droplet growth and size distribution in clouds—A review. J. Aerosol Sci., 28 , 11771214.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., and A. P. Khain, 2002a: Fine structure of cloud droplet concentration as seen from the Fast-FSSP measurements. Part II: Results of in situ observations. J. Appl. Meteor., 42 , 6573.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., and A. P. Khain, 2002b: Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Quart. J. Roy. Meteor. Soc., 128 , 501533.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., and A. P. Khain, 2004: Collisions of small drops in a turbulent flow. Part II: Effects of flow accelerations. J. Atmos. Sci., 61 , 19261939.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., A. P. Khain, and M. Shapiro, 1999: Collisions of small drops in a turbulent flow. Part I: Collision efficiency. Problem formulation and preliminary results. J. Atmos. Sci., 56 , 25852600.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., A. P. Khain, and M. Shapiro, 2000: Stochastic effects of cloud droplet hydrodynamic interaction in a turbulent flow. Atmos. Res., 53 , 131169.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., A. P. Khain, B. Grits, and M. Shapiro, 2006: Collisions of small drops in a turbulent flow. Part III: Relative droplet fluxes and swept volumes. J. Atmos. Sci., 63 , 21232139.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Reuter, G. W., R. de Villiers, and Y. Yavin, 1988: The collection kernel for two falling cloud drops subjected to random perturbations at a turbulent air flow: A stochastic model. J. Atmos. Sci., 45 , 765773.

    • Search Google Scholar
    • Export Citation
  • Riemer, N., and A. S. Wexler, 2005: Droplets to drops by turbulent coagulation. J. Atmos. Sci., 62 , 19621975.

  • Riemer, N., and A. S. Wexler, 2006: Reply. J. Atmos. Sci., 63 , 24022404.

  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Butterworth-Heinemann, 290 pp.

  • Saffman, P. G., and J. S. Turner, 1956: On the collision of drops in turbulent clouds. J. Fluid Mech., 1 , 1630.

  • Scott, W. T., 1967: Poisson statistics in distributions of coalescing droplets. J. Atmos. Sci., 24 , 221225.

  • Siebert, H., K. Lehmann, and M. Wendisch, 2006: Observations of small-scale turbulence and energy dissipation rates in the cloudy boundary layer. J. Atmos. Sci., 63 , 14511466.

    • Search Google Scholar
    • Export Citation
  • Simmel, M., T. Trautmann, and G. Tetzlaff, 2002: Numerical solution of the stochastic collection equation—Comparison of the Linear Discrete Method with other methods. Atmos. Res., 61 , 135148.

    • Search Google Scholar
    • Export Citation
  • Smith, S. A., and P. R. Jonas, 1995: Observations of the turbulent fluxes in fields of cumulus clouds. Quart. J. Roy. Meteor. Soc., 121 , 11851208.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1989: Growth of cloud drops by condensation: A criticism of currently accepted theory and a new approach. J. Atmos. Sci., 46 , 869887.

    • Search Google Scholar
    • Export Citation
  • Su, C-W., S. K. Krueger, P. A. McMurtry, and P. H. Austin, 1998: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds. Atmos. Res., 47–48 , 4158.

    • Search Google Scholar
    • Export Citation
  • Sundaram, S., and L. R. Collins, 1997: Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech., 335 , 75109.

    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., R. M. Rauber, H. T. Ochs III, and L. J. Miller, 1997: The microphysical structure and evolution of Hawaiian rainband clouds. Part I: Radar observations of rainbands containing high reflectivity cores. J. Atmos. Sci., 54 , 369385.

    • Search Google Scholar
    • Export Citation
  • Telford, J. W., 1955: A new aspect of coalescence theory. J. Meteor., 12 , 436444.

  • Vaillancourt, P. A., and M. K. Yau, 2000: Review of particle–turbulence interactions and consequences for cloud physics. Bull. Amer. Meteor. Soc., 81 , 285298.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., M. K. Yau, and W. W. Grabowski, 2001: Microscopic approach to cloud droplet growth by condensation. Part I: Model description and results without turbulence. J. Atmos. Sci., 58 , 19451964.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., M. K. Yau, P. Bartello, and W. W. Grabowski, 2002: Microscopic approach to cloud droplet growth by condensation. Part II: Turbulence, clustering, and condensational growth. J. Atmos. Sci., 59 , 34213435.

    • Search Google Scholar
    • Export Citation
  • Wang, L-P., and M. R. Maxey, 1993: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech., 256 , 2768.

    • Search Google Scholar
    • Export Citation
  • Wang, L-P., A. S. Wexler, and Y. Zhou, 1998a: On the collision rate of small particles in isotropic turbulence. Part 1. Zero-inertia case. Phys. Fluids, 10 , 266276.

    • Search Google Scholar
    • Export Citation
  • Wang, L-P., A. S. Wexler, and Y. Zhou, 1998b: Statistical mechanical descriptions of turbulent coagulation. Phys. Fluids, 10 , 26472651.

    • Search Google Scholar
    • Export Citation
  • Wang, L-P., A. S. Wexler, and Y. Zhou, 2000: Statistical mechanical descriptions of turbulent coagulation of inertial particles. J. Fluid Mech., 415 , 117153.

    • Search Google Scholar
    • Export Citation
  • Wang, L-P., O. Ayala, S. E. Kasprzak, and W. W. Grabowski, 2005a: Theoretical formulation of collision rate and collision efficiency of hydrodynamically interacting cloud droplets in turbulent atmosphere. J. Atmos. Sci., 62 , 24332450.

    • Search Google Scholar
    • Export Citation
  • Wang, L-P., O. Ayala, and Y. Xue, 2005b: Reconciling the cylindrical formulation with the spherical formulation in the kinematic descriptions of collision kernel. Phys. Fluids, 17 .067 103, doi:10.1063/1.1928647.

    • Search Google Scholar
    • Export Citation
  • Wang, L-P., O. Ayala, Y. Xue, and W. W. Grabowski, 2006a: Comments on “Droplets to drops by turbulent coagulation”. J. Atmos. Sci., 63 , 23972401.

    • Search Google Scholar
    • Export Citation
  • Wang, L-P., Y. Xue, O. Ayala, and W. W. Grabowski, 2006b: Effects of stochastic coalescence and air turbulence on the size distribution of cloud droplets. Atmos. Res., 82 , 416432.

    • Search Google Scholar
    • Export Citation
  • Wang, L-P., C. N. Franklin, O. Ayala, and W. W. Grabowski, 2006c: Probability distributions of angle of approach and relative velocity for colliding droplets in a turbulent flow. J. Atmos. Sci., 63 , 881900.

    • Search Google Scholar
    • Export Citation
  • Wang, L-P., Y. Xue, and W. W. Grabowski, 2007: A bin integral method for solving the kinetic collection equation. J. Comput. Phys., 226 , 5988.

    • Search Google Scholar
    • Export Citation
  • Weil, J. C., R. P. Lawson, and A. R. Rodi, 1993: Relative dispersion of ice crystals in seeded cumuli. J. Appl. Meteor., 32 , 10551073.

    • Search Google Scholar
    • Export Citation
  • Zaichik, L. I., and V. M. Alipchenkov, 2003: Pair dispersion and preferential concentration of particles in isotropic turbulence. Phys. Fluids, 15 , 17761787.

    • Search Google Scholar
    • Export Citation
  • Zaichik, L. I., O. Simonin, and V. M. Alipchenkov, 2003: Two statistical models for predicting collision rates of inertial particles in homogeneous isotropic turbulence. Phys. Fluids, 15 , 29953005.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., A. S. Wexler, and L-P. Wang, 2001: Modelling turbulent collision of bidisperse inertial particles. J. Fluid Mech., 433 , 77104.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1198 295 31
PDF Downloads 896 247 22