Aerosol Effects on Clouds, Precipitation, and the Organization of Shallow Cumulus Convection

Huiwen Xue School of Physics, Department of Atmospheric Sciences, Peking University, Beijing, China

Search for other papers by Huiwen Xue in
Current site
Google Scholar
PubMed
Close
,
Graham Feingold NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Graham Feingold in
Current site
Google Scholar
PubMed
Close
, and
Bjorn Stevens Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Bjorn Stevens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the effects of aerosol on clouds, precipitation, and the organization of trade wind cumuli using large eddy simulations (LES). Results show that for this shallow-cumulus-under-stratocumulus case, cloud fraction increases with increasing aerosol as the aerosol number mixing ratio increases from 25 (domain-averaged surface precipitation rate ∼0.65 mm day−1) to 100 mg−1 (negligible surface precipitation). Further increases in aerosol result in a reduction in cloud fraction. It is suggested that opposing influences of aerosol-induced suppression of precipitation and aerosol-induced enhancement of evaporation are responsible for this nonmonotonic behavior.

Under clean conditions (25 mg−1), drizzle is shown to initiate and maintain mesoscale organization of cumulus convection. Precipitation induces downdrafts and cold pool outflow as the cumulus cell develops. At the surface, the center of the cell is characterized by a divergence field, while the edges of the cell are zones of convergence. Convergence drives the formation and development of new cloud cells, leading to a mesoscale open cellular structure. These zones of new cloud formation generate new precipitation zones that continue to reinforce the cellular structure. For simulations with an aerosol concentration of 100 mg−1 the cloud fields do not show any cellular organization. On average, no evidence is found for aerosol effects on the lifetime of these clouds, suggesting that cloud fraction response to changes in aerosol is tied to the frequency of convection and/or cloud size.

Corresponding author address: Huiwen Xue, School of Physics, Department of Atmospheric Sciences, Peking University, Beijing 100871, China. Email: hxue@pku.edu.cn

Abstract

This study investigates the effects of aerosol on clouds, precipitation, and the organization of trade wind cumuli using large eddy simulations (LES). Results show that for this shallow-cumulus-under-stratocumulus case, cloud fraction increases with increasing aerosol as the aerosol number mixing ratio increases from 25 (domain-averaged surface precipitation rate ∼0.65 mm day−1) to 100 mg−1 (negligible surface precipitation). Further increases in aerosol result in a reduction in cloud fraction. It is suggested that opposing influences of aerosol-induced suppression of precipitation and aerosol-induced enhancement of evaporation are responsible for this nonmonotonic behavior.

Under clean conditions (25 mg−1), drizzle is shown to initiate and maintain mesoscale organization of cumulus convection. Precipitation induces downdrafts and cold pool outflow as the cumulus cell develops. At the surface, the center of the cell is characterized by a divergence field, while the edges of the cell are zones of convergence. Convergence drives the formation and development of new cloud cells, leading to a mesoscale open cellular structure. These zones of new cloud formation generate new precipitation zones that continue to reinforce the cellular structure. For simulations with an aerosol concentration of 100 mg−1 the cloud fields do not show any cellular organization. On average, no evidence is found for aerosol effects on the lifetime of these clouds, suggesting that cloud fraction response to changes in aerosol is tied to the frequency of convection and/or cloud size.

Corresponding author address: Huiwen Xue, School of Physics, Department of Atmospheric Sciences, Peking University, Beijing 100871, China. Email: hxue@pku.edu.cn

Save
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432 , 10141017.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Comstock, K. K., C. S. Bretherton, and S. E. Yuter, 2005: Mesoscale variability and drizzle in southeast Pacific stratocumulus. J. Atmos. Sci., 62 , 37923807.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., B. Stevens, W. R. Cotton, and A. S. Frisch, 1996: The relationship between drop in-cloud residence time and drizzle production in numerically simulated stratocumulus clouds. J. Atmos. Sci., 53 , 11081122.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and G. Feingold, 2006: Effect of aerosol on warm convective clouds: Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model. J. Geophys. Res., 111 .D01202, doi:10.1029/2005JD006138.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., H. Xue, A. Teller, G. Feingold, and Z. Levin, 2006: Aerosol effects on the lifetime of shallow cumulus. Geophys. Res. Lett., 33 .L14806, doi:10.1029/2006GL026024.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 2006: Large-eddy simulation of air parcels in stratocumulus clouds: Time scales and spatial variability. J. Atmos. Sci., 63 , 952967.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., B. Stevens, and J. D. Neelin, 2006: A simple equilibrium model for shallow cumulus convection. Theor. Comput. Fluid Dyn., 20 , 305322.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., J. Snider, B. Stevens, G. Vali, I. Faloona, and L. Russell, 2006: Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer. J. Geophys. Res., 111 .D02206, doi:10.1029/2004JD005694.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and M. B. Baker, 1994: Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature, 372 , 250252.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in shallow Cumulus over the Ocean—The RICO Campaign. Bull. Amer. Meteor. Soc., 88 , 19121928.

    • Search Google Scholar
    • Export Citation
  • Savic-Jovcic, V., and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Sharon, T. M., B. A. Albrecht, H. H. Jonsson, P. Minnis, M. M. Khaiyer, T. M. van Reken, J. Seinfeld, and R. Flagan, 2006: Aerosol and cloud microphysical characteristics of rifts and gradients in marine stratocumulus clouds. J. Atmos. Sci., 63 , 983997.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2007: On the growth of layers of nonprecipitating cumulus convection. J. Atmos. Sci., 64 , 29162931.

  • Stevens, B., G. Feingold, R. L. Walko, and W. R. Cotton, 1996: Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53 , 9801006.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55 , 36163638.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., C-H. Moeng, and P. P. Sullivan, 1999: Large-eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56 , 39633984.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58 , 18701891.

  • Stevens, B., and Coauthors, 2005: Pockets of open cells and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86 , 5157.

  • Stevens, D., A. S. Ackerman, and C. S. Bretherton, 2002: Effects of domain size and numerical resolution on the simulation of shallow cumulus convection. J. Atmos. Sci., 59 , 32853301.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8 , 12511256.

  • vanZanten, M. C., and B. Stevens, 2005: Observations of the structure of heavily precipitating marine stratocumulus. J. Atmos. Sci., 62 , 43274342.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Q. Wang, and G. Feingold, 2003: Turbulence, condensation, and liquid water transport in numerically simulated nonprecipitating stratocumulus clouds. J. Atmos. Sci., 60 , 262278.

    • Search Google Scholar
    • Export Citation
  • Xue, H., and G. Feingold, 2006: Large-eddy simulations of trade wind cumuli: Investigation of aerosol indirect effects. J. Atmos. Sci., 63 , 16051622.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1124 512 52
PDF Downloads 588 176 18