Fragmentation of Freezing Drops in Shallow Maritime Frontal Clouds

Arthur L. Rangno Cloud and Aerosol Research Group, Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Arthur L. Rangno in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Images of frozen drops with pieces missing were collected on two days of airborne sampling in shallow supercooled stratiform frontal clouds in the coastal waters of Washington State. In those limited regions where ice appeared to be newly formed, ice fragments with rounded portions accounted for about 5% of the total ice particle concentrations. These results are in rough agreement with the body of literature on laboratory experiments concerning the freezing of drops in free fall that have suggested a modest, though not insignificant, role for the fragmentation of freezing drops on total ice particle concentrations when larger supercooled drops are present.

Corresponding author address: Arthur L. Rangno, Sky Guide, P.O. Box 30027, Greenwood Station, Seattle, WA 98113-2027. Email: skyguide@comcast.net

Abstract

Images of frozen drops with pieces missing were collected on two days of airborne sampling in shallow supercooled stratiform frontal clouds in the coastal waters of Washington State. In those limited regions where ice appeared to be newly formed, ice fragments with rounded portions accounted for about 5% of the total ice particle concentrations. These results are in rough agreement with the body of literature on laboratory experiments concerning the freezing of drops in free fall that have suggested a modest, though not insignificant, role for the fragmentation of freezing drops on total ice particle concentrations when larger supercooled drops are present.

Corresponding author address: Arthur L. Rangno, Sky Guide, P.O. Box 30027, Greenwood Station, Seattle, WA 98113-2027. Email: skyguide@comcast.net

Save
  • Brownscombe, J. L., and J. Hallett, 1967: Experimental and field studies of precipitation particles formed by the freezing of supercooled water. Quart. J. Roy. Meteor. Soc., 93 , 455–473.

    • Search Google Scholar
    • Export Citation
  • Cannon, T. W., J. E. Dye, and V. Toutenhoofd, 1974: The mechanism of precipitation formation in northeastern Colorado cumulus. II. Sailplane measurements. J. Atmos. Sci., 31 , 2148–2151.

    • Search Google Scholar
    • Export Citation
  • Chisnell, R. F., and J. Latham, 1976: Ice particle multiplication in cumulus clouds. Quart. J. Roy. Meteor. Soc., 102 , 133–156.

  • Choularton, T. W., J. Latham, and B. J. Mason, 1978: A possible mechanism of ice splinter production during riming. Nature, 274 , 791–792.

    • Search Google Scholar
    • Export Citation
  • Choularton, T. W., D. J. Griggs, B. Y. Humood, and J. Latham, 1980: Laboratory studies of riming, and its relation to ice splinter production. Quart. J. Roy. Meteor. Soc., 106 , 367–374.

    • Search Google Scholar
    • Export Citation
  • Coons, R. D., and R. Gunn, 1951: Relation of artificial cloud-modification to the production of precipitation. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 235–241.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and P. V. Hobbs, 1966: Effect of carbon dioxide on the shattering of freezing water drops. Nature, 209 , 464–466.

  • Dye, J. E., and P. V. Hobbs, 1968: The influence of environmental parameters on the freezing and fragmentation of suspended water drops. J. Atmos. Sci., 25 , 82–96.

    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: The Physics of Rainclouds. Cambridge University Press, 386 pp.

  • Gerber, H., B. G. Arends, and A. S. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31 , 235–252.

  • Goldsmith, P., J. Gloster, and C. Hume, 1976: The ice phase in clouds. Preprints, Int. Conf. on Cloud Physics, Boulder, CO, Amer. Meteor. Soc., 163–167.

  • Griggs, D. J., and T. W. Choularton, 1983: Freezing modes of riming droplets with application to ice splinter production. Quart. J. Roy. Meteor. Soc., 109 , 243–253.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249 , 26–28.

  • Hobbs, P. V., 1969: Ice multiplication in clouds. J. Atmos. Sci., 26 , 315–318.

  • Hobbs, P. V., and A. J. Alkezweeny, 1968: The fragmentation of freezing water droplets in free fall. J. Atmos. Sci., 25 , 881–888.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1985: Ice particle concentrations in clouds. J. Atmos. Sci., 42 , 2523–2549.

  • Johnson, D. A., and J. Hallett, 1968: Freezing and shattering of supercooled water drops. Quart. J. Roy. Meteor. Soc., 94 , 468–482.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 1974: Drop freezing in clouds. J. Atmos. Sci., 31 , 1174–1176.

  • Koenig, L. R., 1963: The glaciating behavior of small cumulonimbus clouds. J. Atmos. Sci., 20 , 29–47.

  • Koenig, L. R., 1968: Some observations suggesting ice multiplication in the atmosphere. J. Atmos. Sci., 25 , 460–463.

  • Kolomeychuk, R. J., D. C. McKay, and J. V. Iribarne, 1975: The fragmentation and electrification of freezing drops. J. Atmos. Sci., 32 , 974–979.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., M. P. Bailey, J. Hallett, and G. A. Isaac, 2004: Laboratory and in situ observation of deposition growth of frozen drops. J. Appl. Meteor., 43 , 612–622.

    • Search Google Scholar
    • Export Citation
  • Kostinski, A. B., and A. R. Jameson, 1997: Fluctuation properties of precipitation. Part I: On deviations of single-size drop counts from the Poisson distribution. J. Atmos. Sci., 54 , 2174–2186.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and T. L. Jensen, 1998: Improved microphysical observations in mixed phase clouds. Preprints, Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 451–454.

  • Ludlam, F. H., 1952: The production of showers by the growth of ice particles. Quart J. Roy. Meteor. Soc., 78 , 543–553.

  • Ludlam, F. H., 1955: Artificial snowfall from mountain clouds. Tellus, 7 , 277–290.

  • Mason, B. J., and J. Maybank, 1961: The fragmentation and electrification of freezing water drops. Quart. J. Roy. Meteor. Soc., 87 , 113–114.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1978: The influence of drop size distribution on the production of secondary ice particles during graupel growth. Quart. J. Roy. Meteor. Soc., 104 , 323–330.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1985: Secondary ice particle production during rime growth: The effect of drop size distribution and rimer velocity. Quart. J. Roy. Meteor. Soc., 111 , 1113–1124.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., and J. Hallett, 1974: Ice crystal concentration in cumulus clouds: Influence of the drop spectrum. Science, 186 , 632–634.

    • Search Google Scholar
    • Export Citation
  • Murgatroyd, R. J., and M. P. Garrod, 1960: Observations of precipitation elements in cumulus clouds. Quart. J. Roy. Meteor. Soc., 86 , 167–175.

    • Search Google Scholar
    • Export Citation
  • Ono, A., 1972: Evidence on the nature of ice crystal multiplication processes in natural cloud. J. Rech. Atmos., 6 , 399–408.

  • Phillips, V. T. J., A. M. Blyth, P. R. A. Brown, T. W. Choularton, and J. Latham, 2001: The glaciation of a cumulus cloud over New Mexico. Quart. J. Roy. Meteor. Soc., 127 , 1513–1534.

    • Search Google Scholar
    • Export Citation
  • Pitter, R. L., and H. R. Pruppacher, 1973: A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc., 99 , 540–550.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 1991: Ice particle concentrations and precipitation development in small polar maritime cumuliform clouds. Quart. J. Roy. Meteor. Soc., 117 , 207–241.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 2005: Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc., 131 , 639–673.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79 , 2457–2476.

    • Search Google Scholar
    • Export Citation
  • Scott, B. C., and P. V. Hobbs, 1977: A theoretical study of the evolution of mixed-phase cumulus clouds. J. Atmos. Sci., 34 , 812–826.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. A. Haggerty, A. Heymsfield, and C. A. Grainger, 2004: Microphysical characteristics of tropical updrafts in clean conditions. J. Appl. Meteor., 43 , 779–794.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., and Coauthors, 2003: Improvement of microphysical parameterization through observational verification experiment. Bull. Amer. Meteor. Soc., 84 , 1807–1826.

    • Search Google Scholar
    • Export Citation
  • Takahashi, C., and A. Yamashita, 1970: Shattering of frozen water drops in a supercooled cloud. J. Meteor. Soc. Japan, 48 , 369–372.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and N. Fukuta, 1988: Observations of the embryos of graupel. J. Atmos. Sci., 45 , 3288–3297.

  • Vaughan, H. C., 1954: The spontaneous freezing temperatures of melted snow and of small water drops. Bull. Amer. Meteor. Soc., 35 , 52–55.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1235 866 74
PDF Downloads 144 48 5