Modulation of Small-Scale Turbulence by Ducted Gravity Waves in the Nocturnal Boundary Layer

Y. P. Meillier Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Y. P. Meillier in
Current site
Google Scholar
PubMed
Close
,
R. G. Frehlich Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by R. G. Frehlich in
Current site
Google Scholar
PubMed
Close
,
R. M. Jones Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by R. M. Jones in
Current site
Google Scholar
PubMed
Close
, and
B. B. Balsley Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by B. B. Balsley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Constant altitude measurements of temperature and velocity in the residual layer of the nocturnal boundary layer, collected by the Cooperative Institute for Research in Environmental Sciences (CIRES) Tethered Lifting System (TLS), exhibit fluctuations identified by previous work (Fritts et al.) as the signature of ducted gravity waves. The concurrent high-resolution TLS turbulence measurements (temperature structure constant C2T and turbulent kinetic energy dissipation rate ε) reveal the presence of patches of enhanced turbulence activity that are roughly synchronized with the troughs of the temperature and velocity fluctuations. To investigate the potentially dominant role ducted gravity waves might play on the modulation of atmospheric stability and therefore, on turbulence, time series of the wave-modulated gradient Richardson number (Ri) and of the vertical gradient of potential temperature ∂θ/∂z(t) are computed numerically and compared to the TLS small-scale turbulence measurements. The results of this study agree with the predictions of previous theoretical studies (i.e., wave-generated fluctuations of temperature and velocity modulate the gradient Richardson number), resulting in periodic enhancements of turbulence at Ri minima. The patches of turbulence observed in the TLS dataset are subsequently identified as convective instabilities generated locally within the unstable phase of the wave.

Corresponding author address: Dr. Yannick Meillier, University of Colorado, CIRES CB216, Boulder, CO 80309. Email: meillier@cires.colorado.edu

Abstract

Constant altitude measurements of temperature and velocity in the residual layer of the nocturnal boundary layer, collected by the Cooperative Institute for Research in Environmental Sciences (CIRES) Tethered Lifting System (TLS), exhibit fluctuations identified by previous work (Fritts et al.) as the signature of ducted gravity waves. The concurrent high-resolution TLS turbulence measurements (temperature structure constant C2T and turbulent kinetic energy dissipation rate ε) reveal the presence of patches of enhanced turbulence activity that are roughly synchronized with the troughs of the temperature and velocity fluctuations. To investigate the potentially dominant role ducted gravity waves might play on the modulation of atmospheric stability and therefore, on turbulence, time series of the wave-modulated gradient Richardson number (Ri) and of the vertical gradient of potential temperature ∂θ/∂z(t) are computed numerically and compared to the TLS small-scale turbulence measurements. The results of this study agree with the predictions of previous theoretical studies (i.e., wave-generated fluctuations of temperature and velocity modulate the gradient Richardson number), resulting in periodic enhancements of turbulence at Ri minima. The patches of turbulence observed in the TLS dataset are subsequently identified as convective instabilities generated locally within the unstable phase of the wave.

Corresponding author address: Dr. Yannick Meillier, University of Colorado, CIRES CB216, Boulder, CO 80309. Email: meillier@cires.colorado.edu

Save
  • Balsley, B. B., M. L. Jensen, and R. G. Frehlich, 1998: The use of state-of-the-art kites for profiling the lower atmosphere. Bound.-Layer Meteor., 87 , 125.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., R. G. Frehlich, M. L. Jensen, and Y. P. Meillier, 2003: Extreme gradients in the nocturnal boundary layer: Structure, evolution, and potential causes. J. Atmos. Sci., 60 , 24962508.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., R. G. Frehlich, M. L. Jensen, and Y. P. Meillier, 2006: High-resolution in situ profiling through the stable boundary layer: Examination of the SBL top in terms of minimum shear, maximum stratification, and turbulence decrease. J. Atmos. Sci., 63 , 12911307.

    • Search Google Scholar
    • Export Citation
  • Basu, S., F. Porté-Agel, E. Foufoula-georgiou, J. Vinuesa, and M. Pahlow, 2006: Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: An integration of field and laboratory measurements with large-eddy simulations. Bound.-Layer Meteor., 119 , 473500.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of the nocturnal inversion. Bull. Amer. Meteor. Soc., 38 , 283290.

    • Search Google Scholar
    • Export Citation
  • Carlson, M. A., and R. B. Stull, 1986: Subsidence in the nocturnal boundary layer. J. Climate Appl. Meteor., 25 , 10881099.

  • Cheng, Y., M. B. Palange, and W. Brutsaert, 2005: Pathology of Monin-Obukhov similarity in the stable boundary layer. J. Geophys. Res., 110 .D06101, doi:10.1029/2004JD004923.

    • Search Google Scholar
    • Export Citation
  • Chimonas, G., 1972: The stability of a coupled wave-turbulence system in a parallel shear flow. Bound.-Layer Meteor., 2 , 444452.

  • Coulter, R. L., and J. C. Doran, 2002: Spatial and temporal occurrences of intermittent turbulence during CASES-99. Bound.-Layer Meteor., 105 , 329349.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and Coauthors, 2000: Stable atmospheric boundary-layer experiment in Spain (SABLES 98): A report. Bound.-Layer Meteor., 96 , 337370.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118 , 273303.

    • Search Google Scholar
    • Export Citation
  • Drazin, P. G., 1977: On the instability of an internal gravity wave. Proc. Roy. Soc. London, 356 , 411432.

  • Eaton, F. D., S. A. McLaughlin, and J. R. Hines, 1995: A new frequency-modulated continuous wave radar for studying planetary boundary layer morphology. Radio Sci., 30 , 7588.

    • Search Google Scholar
    • Export Citation
  • Edwards, N. R., and S. D. Mobbs, 1997: Observations of isolated wave-turbulence interactions in the stable atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 123 , 561584.

    • Search Google Scholar
    • Export Citation
  • Einaudi, F., and J. J. Finnigan, 1981: The interaction between an internal gravity wave and the planetary boundary layer. Part I: The linear analysis. Quart. J. Roy. Meteor. Soc., 107 , 793806.

    • Search Google Scholar
    • Export Citation
  • Einaudi, F., A. J. Bedard Jr., and J. J. Finnigan, 1989: A climatology of gravity waves and other coherent disturbances at the Boulder Atmospheric Observatory during March–April 1984. J. Atmos. Sci., 46 , 303329.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., and F. Einaudi, 1981: The interaction between an internal gravity wave and the planetary boundary layer. Part II: Effect of the wave on the turbulence structure. Quart. J. Roy. Meteor. Soc., 107 , 807832.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., F. Einaudi, and D. Fua, 1984: The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer. J. Atmos. Sci., 41 , 24092436.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., and L. Cornman, 2002: Estimating spatial velocity statistics with coherent Doppler lidar. J. Atmos. Oceanic Technol., 19 , 355366.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., Y. P. Meillier, M. L. Jensen, and B. B. Balsley, 2003: Turbulence measurements with the CIRES Tethered Lifting System during CASES-99: Calibration and spectral analysis of temperature and velocity. J. Atmos. Sci., 60 , 24872495.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., Y. P. Meillier, M. L. Jensen, and B. B. Balsley, 2004: A statistical description of small-scale turbulence in the low-level nocturnal jet. J. Atmos. Sci., 61 , 10791085.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., Y. P. Meillier, M. L. Jensen, B. B. Balsley, and R. Sharman, 2006: Measurements of boundary layer profiles in an urban environment. J. Appl. Meteor. Climatol., 45 , 821837.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and P. K. Rastogi, 1985: Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci., 20 , 12471277.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and J. M. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 .1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., C. Nappo, D. M. Riggin, B. B. Balsley, W. E. Eichinger, and R. K. Newsom, 2003a: Analysis of ducted motions in the stable nocturnal boundary layer during CASES-99. J. Atmos. Sci., 60 , 24502471.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., C. Bizon, J. A. Werne, and C. K. Meyer, 2003b: Layering accompanying turbulence generation due to shear instability and gravity-wave breaking. J. Geophys. Res., 108 .8452, doi:10.1029/2002JD002406.

    • Search Google Scholar
    • Export Citation
  • Fua, D., G. Chimonas, F. Einaudi, and O. Zeman, 1982: An analysis of wave-turbulence interaction. J. Atmos. Sci., 39 , 24502463.

  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Gill, A., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gossard, E. E., and W. H. Hooke, 1975: Waves in the Atmosphere. Elsevier, 456 pp.

  • Hecht, J. H., 2004: Instability layers and airglow imaging. Rev. Geophys., 42 .RG1001, doi:10.1029/2003RG000131.

  • Hines, C., 1988: Generation of turbulence by atmospheric gravity waves. J. Atmos. Sci., 45 , 12691278.

  • Hodges, R. R., 1967: Generation of turbulence in the upper atmosphere by internal gravity waves. J. Geophys. Res., 72 , 34553458.

  • Kondo, J., O. Kanechikam, and N. Yaruda, 1978: Heat and momentum transfer under strong stability in the atmospheric surface layer. J. Atmos. Sci., 35 , 10121021.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and K. K. Tung, 1976: Banded convective activity and ducted gravity waves. Mon. Wea. Rev., 104 , 16021617.

  • Mahrt, L., 1989: Intermittency of atmospheric turbulence. J. Atmos. Sci., 46 , 7995.

  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90 , 375396.

  • Mahrt, L., and D. Vickers, 2003: Formulation of turbulent fluxes in the stable boundary layer. J. Atmos. Sci., 60 , 25382548.

  • Majda, A. J., and M. G. Shefter, 1998: Elementary stratified flows with instability at large Richardson number. J. Fluid Mech., 376 , 319350.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and G. Svensson, 2006: Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. Bound.-Layer Meteor., 118 , 273303.

    • Search Google Scholar
    • Export Citation
  • Monserrat, S., and A. J. Thorpe, 1996: Use of ducting theory in an observed case of gravity waves. J. Atmos. Sci., 53 , 17241736.

  • Nakamura, R., and L. Mahrt, 2005: A study of intermittent turbulence with CASES-99 tower measurements. Bound.-Layer Meteor., 114 , 367387.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 1991: Sporadic breakdowns of stability in the PBL over simple and complex terrain. Bound.-Layer Meteor., 54 , 6987.

  • Newsom, R. K., and R. M. Banta, 2003: Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci., 60 , 1633.

    • Search Google Scholar
    • Export Citation
  • Pellacani, C., and R. Lupini, 1975: Resonant trapped gravity waves and turbulent patches in an inversion layer. Bound.-Layer Meteor., 9 , 205215.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and S. P. Burns, 2003: An evaluation of bulk Ri-based surface layer flux formulas for stable and very stable conditions with intermittent turbulence. J. Atmos. Sci., 60 , 25232537.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83 , 555581.

    • Search Google Scholar
    • Export Citation
  • Revelle, D. O., 1993: Chaos and “bursting” in the planetary boundary layer. J. Appl. Meteor., 32 , 11691179.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sun, J., and Coauthors, 2004: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor., 110 , 255279.

    • Search Google Scholar
    • Export Citation
  • Van De Wiel, B. J. H., A. F. Moene, O. K. Hartogensis, H. A. R. De Bruin, and A. A. M. Holstag, 2003: Intermittent turbulence in the stable boundary layer over land. Part III: A classification for observations during CASES-99. J. Atmos. Sci., 60 , 25092522.

    • Search Google Scholar
    • Export Citation
  • Weinstock, J., 1987: The turbulence field generated by a linear gravity wave. J. Atmos. Sci., 44 , 410420.

  • Werne, J., and D. C. Fritts, 1999: Stratified shear turbulence: Evolution and statistics. Geophys. Res. Lett., 26 , 439442.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 781 547 28
PDF Downloads 134 38 4