A Lagrangian Spectral Parameterization of Gravity Wave Drag Induced by Cumulus Convection

In-Sun Song Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by In-Sun Song in
Current site
Google Scholar
PubMed
Close
and
Hye-Yeong Chun Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by Hye-Yeong Chun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A Lagrangian spectral parameterization of gravity wave drag (GWD) induced by cumulus convection (GWDC) is developed based on ray theory and several assumptions and implemented into the NCAR Whole Atmosphere Community Climate Model. The Lagrangian parameterization calculates explicitly gravity wave (GW) propagation that has been treated too simply in existing column-based parameterizations. For comparison with column-based parameterization, a hydrostatic and Boussinesq version of the Lagrangian parameterization is used in the present study. One-day convective GW-packet trajectories demonstrate that the Lagrangian parameterization calculates reasonably the GW-packet propagation, and GW packets propagate upward along curved paths determined by Doppler shifting and the variation of stability. The GW trajectories show that the horizontal extent of GW propagation can be as large as 20° as GWs approach critical levels. Comparison with column-based parameterization through one-month simulations indicates that the magnitude of GWDC is much increased due mainly to the vertical convergence of GW packets in the lower stratosphere and equatorial troposphere with the Lagrangian parameterization. However, this increase in GWDC is found to be essentially dependent on the horizontal propagation characteristics of GWs. In climate simulations, it is found that the easterly flow in the equatorial stratosphere and mesospheric subtropical jet are improved through the Lagrangian parameterization. With the Lagrangian parameterization, interannual variability is significantly enhanced in the equatorial lower stratosphere and exhibits a structure related to the onset of the westerly phase of the stratospheric quasi-biennial oscillations. Finally, limitations of the current Lagrangian parameterization and required improvements are noted.

Corresponding author address: Prof. Hye-Yeong Chun, Dept. of Atmospheric Sciences, Yonsei University, Shinchon-dong, Seodaemun-ku, Seoul 120-749, South Korea. Email: chunhy@yonsei.ac.kr

Abstract

A Lagrangian spectral parameterization of gravity wave drag (GWD) induced by cumulus convection (GWDC) is developed based on ray theory and several assumptions and implemented into the NCAR Whole Atmosphere Community Climate Model. The Lagrangian parameterization calculates explicitly gravity wave (GW) propagation that has been treated too simply in existing column-based parameterizations. For comparison with column-based parameterization, a hydrostatic and Boussinesq version of the Lagrangian parameterization is used in the present study. One-day convective GW-packet trajectories demonstrate that the Lagrangian parameterization calculates reasonably the GW-packet propagation, and GW packets propagate upward along curved paths determined by Doppler shifting and the variation of stability. The GW trajectories show that the horizontal extent of GW propagation can be as large as 20° as GWs approach critical levels. Comparison with column-based parameterization through one-month simulations indicates that the magnitude of GWDC is much increased due mainly to the vertical convergence of GW packets in the lower stratosphere and equatorial troposphere with the Lagrangian parameterization. However, this increase in GWDC is found to be essentially dependent on the horizontal propagation characteristics of GWs. In climate simulations, it is found that the easterly flow in the equatorial stratosphere and mesospheric subtropical jet are improved through the Lagrangian parameterization. With the Lagrangian parameterization, interannual variability is significantly enhanced in the equatorial lower stratosphere and exhibits a structure related to the onset of the westerly phase of the stratospheric quasi-biennial oscillations. Finally, limitations of the current Lagrangian parameterization and required improvements are noted.

Corresponding author address: Prof. Hye-Yeong Chun, Dept. of Atmospheric Sciences, Yonsei University, Shinchon-dong, Seodaemun-ku, Seoul 120-749, South Korea. Email: chunhy@yonsei.ac.kr

Save
  • Alexander, M. J., 1996: A simulated spectrum of convectively generated gravity waves: Propagation from the tropopause to the mesopause and effects on the middle atmosphere. J. Geophys. Res., 101 , 15711588.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., 2004: Gravity wave generation by a three-dimensional thermal forcing. J. Atmos. Sci., 61 , 18051815.

  • Beres, J. H., R. R. Garcia, B. A. Boville, and F. Sassi, 2005: Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). J. Geophys. Res., 110 .D10108, doi:10.1029/2004JD005504.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., and C. J. R. Garrett, 1969: Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. London, 302 , 529554.

  • Broad, A. S., 1999: Do orographic gravity waves break in flows with uniform wind direction turning with height? Quart. J. Roy. Meteor. Soc., 125 , 16951714.

    • Search Google Scholar
    • Export Citation
  • Broutman, D., J. W. Rottman, and S. D. Eckermann, 2004: Ray methods for internal waves in the atmosphere and ocean. Annu. Rev. Fluid Mech., 36 , 233253.

    • Search Google Scholar
    • Export Citation
  • Browning, G. L., H-O. Kreiss, and W. H. Schubert, 2000: The role of gravity waves in slow varying in time tropospheric motions near the equator. J. Atmos. Sci., 57 , 40084019.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., and M. E. McIntyre, 2003: Remote recoil: A new wave–mean interaction effect. J. Fluid Mech., 492 , 207230.

  • Chun, H-Y., and J-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55 , 32993310.

    • Search Google Scholar
    • Export Citation
  • Chun, H-Y., and J-J. Baik, 2002: An updated parameterization of convectively forced gravity wave drag for use in large-scale models. J. Atmos. Sci., 59 , 10061017.

    • Search Google Scholar
    • Export Citation
  • Chun, H-Y., M-D. Song, J-W. Kim, and J-J. Baik, 2001: Effects of gravity wave drag induced by cumulus convection on the atmospheric general circulation. J. Atmos. Sci., 58 , 302319.

    • Search Google Scholar
    • Export Citation
  • Chun, H-Y., I-S. Song, J-J. Baik, and Y-J. Kim, 2004: Impact of a convectively forced gravity wave drag parameterization in NCAR CCM3. J. Climate, 17 , 35303547.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1984: Inertia–gravity waves in the stratosphere. J. Atmos. Sci., 41 , 33963404.

  • Eckermann, S. D., and C. J. Marks, 1997: GROGRAT: A new model of the global propagation and dissipation of atmospheric gravity waves. Adv. Space Res., 20 , 12531256.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and P. Preusse, 1999: Global measurements of stratospheric mountain waves from space. Science, 286 , 15341537.

  • Einaudi, F., and C. O. Hines, 1970: WKB approximation in application to acoustic gravity waves. Can. J. Phys., 48 , 14581471.

  • Fomichev, V. I., W. E. Ward, S. R. Beagley, C. McLandress, J. C. McConnell, N. A. McFarlane, and T. G. Shepherd, 2002: Extended Canadian Middle Atmosphere Model: Zonal-mean climatology and physical parameterization. J. Geophys. Res., 107 .4087, doi:10.1029/2001JD000479.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and P. K. Rastogi, 1985: Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci., 20 , 12471277.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 .1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., T. J. Dunkerton, R. S. Lieberman, and R. A. Vincent, 1997: Climatology of the semiannual oscillation of the tropical middle atmosphere. J. Geophys. Res., 102 , 2601926032.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, and E. Roeckner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29 .1245, doi:10.1029/2002GL014756.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, E. Roeckner, M. Esch, and L. Bengtsson, 2006: Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Climate, 19 , 38823901.

    • Search Google Scholar
    • Export Citation
  • Gropp, W., E. Lusk, and A. Skjellum, 1999: Using MPI: Portable Parallel Programming with the Message-Passing Interface. 2nd ed. MIT Press, 395 pp.

    • Search Google Scholar
    • Export Citation
  • Guest, F. M., M. J. Reeder, C. J. Marks, and D. J. Karoly, 2000: Inertia–gravity waves observed in the lower stratosphere over Macquarie Island. J. Atmos. Sci., 57 , 737752.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., 2002: The evolution of a stratospheric wave packet. J. Atmos. Sci., 59 , 202217.

  • Hassler, B., and C. D. Warner, 2006: Horizontal refraction of gravity waves in a global ray tracing experiment. Geophysical Research Abstracts, Vol. 8, Abstract 09685. [Available online at http://www.cosis.net/abstracts/EGU06/09685/EGU06-J-09685.pdf.].

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1988: Generation of turbulence by atmospheric gravity waves. J. Atmos. Sci., 45 , 12691278.

  • Hines, C. O., 1997: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation. J. Atmos. Solar-Terr. Phys., 59 , 387400.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., S. D. Eckermann, D. L. Wu, and J. Ma, 2004: A search for mountain waves in MLS stratospheric limb radiances from the winter Northern Hemisphere: Data analysis and global mountain wave modeling. J. Geophys. Res., 109 .D03107, doi:10.1029/2003JD003974.

    • Search Google Scholar
    • Export Citation
  • Kim, Y-J., S. D. Eckermann, and H-Y. Chun, 2003: An overview of the past, present, and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmos.–Ocean, 41 , 6598.

    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1978: Waves in Fluids. Cambridge University Press, 504 pp.

  • Manzini, E., N. A. McFarlane, and C. McLandress, 1997: Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model. J. Geophys. Res., 102 , 2575125762.

    • Search Google Scholar
    • Export Citation
  • Marks, C. J., and S. D. Eckermann, 1995: A three-dimensional nonhydrostatic ray-tracing model for gravity waves: Formulation and preliminary results for the middle atmosphere. J. Atmos. Sci., 52 , 19591984.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 1980: An introduction to the generalized Lagrangian-mean description of wave, mean-flow interaction. Pure Appl. Geophys., 118 , 152176.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., and G. P. Klaassen, 2001: Realistic semiannual oscillation simulated in a middle atmosphere general circulation model. Geophys. Res. Lett., 28 , 733736.

    • Search Google Scholar
    • Export Citation
  • Meissner, L. P., 1998: Fortran 90 & 95 array and pointer techniques: Objects, data structures, and algorithms with subsets e-LF90 and F. Unicomp, Inc., 166 pp. [Available from Unicomp, Inc., 11930 Menaul Blvd. NE, Suite 106, Albuquerque, NM 87112.].

  • Norton, W. A., and J. Thuburn, 1999: Sensitivity of mesospheric mean flow, planetary waves and tides to strength of gravity wave drag. J. Geophys. Res., 104 , 3089730911.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in FORTRAN: The Art of Scientific Computing. Cambridge University Press, 992 pp.

    • Search Google Scholar
    • Export Citation
  • Sartelet, K. N., 2003: Wave propagation inside an inertia wave. Part I: Role of time dependence and scale separation. J. Atmos. Sci., 60 , 14331447.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., R. R. Garcia, B. A. Boville, and H. Liu, 2002: On temperature inversions and the mesospheric surf zone. J. Geophys. Res., 107 .4380, doi:10.1029/2001JD001525.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, C. D. Warner, and R. Swinbank, 2002: Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci., 59 , 14731489.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., 1985: A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere. J. Geophys. Res., 90 , 79998010.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and T. G. Shepherd, 2007: Angular momentum conservation and gravity wave drag parameterization: Implications for climate models. J. Atmos. Sci., 64 , 190203.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and T. A. Shaw, 2004: The angular momentum constraint on climate sensitivity and downward influence in the middle atmosphere. J. Atmos. Sci., 61 , 28992908.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., and M. Deushi, 2005: Partitioning between resolved wave forcing and unresolved gravity wave forcing to the quasi-biennial oscillation as revealed with a coupled chemistry-climate model. Geophys. Res. Lett., 32 .L12820, doi:10.1029/2005GL022885.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 1999: Development of synoptic-scale disturbances over the summertime tropical Northwest Pacific. J. Atmos. Sci., 56 , 31063127.

    • Search Google Scholar
    • Export Citation
  • Song, I-S., and H-Y. Chun, 2005: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. J. Atmos. Sci., 62 , 107124.

    • Search Google Scholar
    • Export Citation
  • Song, I-S., H-Y. Chun, R. R. Garcia, and B. A. Boville, 2007: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part II: Impacts in a GCM (WACCM). J. Atmos. Sci., 64 , 22862308.

    • Search Google Scholar
    • Export Citation
  • Swinbank, R., and D. A. Ortland, 2003: Compilation of wind data for the Upper Atmosphere Research Satellite (UARS) Reference Atmosphere Project. J. Geophys. Res., 108 .4615, doi:10.1029/2002JD003135.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2360 707 39
PDF Downloads 128 26 2