Convectively Coupled Equatorial Waves Simulated on an Aquaplanet in a Global Nonhydrostatic Experiment

Tomoe Nasuno Frontier Research Center for Global Change, Japan Agency for Marine–Earth Science and Technology, Yokohama, Japan

Search for other papers by Tomoe Nasuno in
Current site
Google Scholar
PubMed
Close
,
Hirofumi Tomita Frontier Research Center for Global Change, Japan Agency for Marine–Earth Science and Technology, Yokohama, Japan

Search for other papers by Hirofumi Tomita in
Current site
Google Scholar
PubMed
Close
,
Shinichi Iga Frontier Research Center for Global Change, Japan Agency for Marine–Earth Science and Technology, Yokohama, Japan

Search for other papers by Shinichi Iga in
Current site
Google Scholar
PubMed
Close
,
Hiroaki Miura Frontier Research Center for Global Change, Japan Agency for Marine–Earth Science and Technology, Yokohama, Japan

Search for other papers by Hiroaki Miura in
Current site
Google Scholar
PubMed
Close
, and
Masaki Satoh Frontier Research Center for Global Change, Japan Agency for Marine–Earth Science and Technology, Yokohama, and Center for Climate System Research, University of Tokyo, Kashiwa, Chiba, Japan

Search for other papers by Masaki Satoh in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Large-scale tropical convective disturbances simulated in a 7-km-mesh aquaplanet experiment are investigated. A 40-day simulation was executed using the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). Two scales of eastward-propagating disturbances were analyzed. One was tightly coupled to a convective system resembling super–cloud clusters (SCCs) with a zonal scale of several thousand kilometers (SCC mode), whereas the other was characterized by a planetary-scale dynamical structure (40 000-km mode). The typical phase velocity was 17 (23) m s−1 for the SCC (40 000 km) mode. The SCC mode resembled convectively coupled Kelvin waves in the real atmosphere around the equator, but was accompanied by a pair of off-equatorial gyres. The 40 000-km mode maintained a Kelvin wave–like zonal structure, even poleward of the equatorial Rossby deformation radius. The equatorial structures in both modes matched neutral eastward-propagating gravity waves in the lower troposphere and unstable (growing) waves in the upper troposphere. In both modes, the meridional mass divergence exceeded the zonal component, not only in the boundary layer, but also in the free atmosphere. The forcing terms indicated that the meridional flow was primarily driven by convection via deformation in pressure fields and vertical circulations. Moisture convergence was one order of magnitude greater than the moisture flux from the sea surface. In the boundary layer, frictional convergence in the (anomalous) low-level easterly phase accounted for the buildup of low-level moisture leading to the active convective phase. The moisture distribution in the free atmosphere suggested that the moisture–convection feedback operated efficiently, especially in the SCC mode.

Corresponding author address: Dr. Tomoe Nasuno, Yokohama Institute for Earth Sciences, Frontier Research Center for Global Change, Japan Agency for Marine–Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: nasuno@jamstec.go.jp

Abstract

Large-scale tropical convective disturbances simulated in a 7-km-mesh aquaplanet experiment are investigated. A 40-day simulation was executed using the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). Two scales of eastward-propagating disturbances were analyzed. One was tightly coupled to a convective system resembling super–cloud clusters (SCCs) with a zonal scale of several thousand kilometers (SCC mode), whereas the other was characterized by a planetary-scale dynamical structure (40 000-km mode). The typical phase velocity was 17 (23) m s−1 for the SCC (40 000 km) mode. The SCC mode resembled convectively coupled Kelvin waves in the real atmosphere around the equator, but was accompanied by a pair of off-equatorial gyres. The 40 000-km mode maintained a Kelvin wave–like zonal structure, even poleward of the equatorial Rossby deformation radius. The equatorial structures in both modes matched neutral eastward-propagating gravity waves in the lower troposphere and unstable (growing) waves in the upper troposphere. In both modes, the meridional mass divergence exceeded the zonal component, not only in the boundary layer, but also in the free atmosphere. The forcing terms indicated that the meridional flow was primarily driven by convection via deformation in pressure fields and vertical circulations. Moisture convergence was one order of magnitude greater than the moisture flux from the sea surface. In the boundary layer, frictional convergence in the (anomalous) low-level easterly phase accounted for the buildup of low-level moisture leading to the active convective phase. The moisture distribution in the free atmosphere suggested that the moisture–convection feedback operated efficiently, especially in the SCC mode.

Corresponding author address: Dr. Tomoe Nasuno, Yokohama Institute for Earth Sciences, Frontier Research Center for Global Change, Japan Agency for Marine–Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: nasuno@jamstec.go.jp

Save
  • Chang, C-P., 1970: Westward propagating cloud patterns in the tropical Pacific as seen from time-composite satellite photographs. J. Atmos. Sci., 27 , 133138.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44 , 23242340.

  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54 , 23732386.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55 , 32833298.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58 , 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 60 , 847864.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61 , 19401952.

  • Grabowski, W. W., 2006: Impact of explicit atmosphere–ocean coupling on MJO-like coherent structures in idealized aquaplanet simulations. J. Atmos. Sci., 63 , 22892306.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. Moncrieff, 2001: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127 , 445468.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. Moncrieff, 2004: Moisture–convection feedback in the Tropics. Quart. J. Roy. Meteor. Soc., 130 , 30813104.

  • Hayashi, Y., 1970: A theory of large-scale equatorial waves generated by condensation heat and accelerating the zonal wind. J. Meteor. Soc. Japan, 48 , 140160.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1977: On the coherence between progressive and retrogressive waves and a partition of space–time power spectra into standing and traveling parts. J. Appl. Meteor., 16 , 368373.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., and D. G. Golder, 1997: United mechanism for the generation of low- and high-frequency tropical waves. Part I: Control experiments with moist convective adjustment. J. Atmos. Sci., 54 , 12621276.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y-Y., and A. Sumi, 1986: The 20–30-day oscillations simulated in an “aqua planet” model. J. Meteor. Soc. Japan, 64 , 451467.

    • Search Google Scholar
    • Export Citation
  • Hendon, H., and M. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Houze Jr., R. A., S. S. Chen, D. E. Kingsmill, Y. Serra, and V. D. Pope, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57 , 30583089.

    • Search Google Scholar
    • Export Citation
  • Iga, S., Y. Tsusima, H. Tomita, and M. Satoh, 2007: Climatology of a nonhydrostatic global model with explicit cloud processes. Geophys. Res. Lett., 34 .L22814, doi:10.1029/2007GL031048.

    • Search Google Scholar
    • Export Citation
  • Innes, P. M., J. M. Slingo, S. J. Woolnough, R. B. Neale, and V. D. Pope, 2001: Organization of tropical convection in a GCM with varying vertical resolution; implications for the simulation of the Madden–Julian oscillation. Climate Dyn., 17 , 777793.

    • Search Google Scholar
    • Export Citation
  • K-1 Model Developers, 2004: K-1 coupled GCM (MIROC) description. K-1 Tech. Rep. 1, Center for Climate System Research, University of Tokyo, Tokyo, Japan, 34 pp.

  • Kemball-Cook, S., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14 , 780793.

  • Khairoutdinov, M., and D. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate Model: Preliminary results. Geophys. Res. Lett., 28 , 36173620.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., D. Randall, and C. DeMott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62 , 21362154.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63 , 13081323.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62 , 27902809.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z. M., 2008: A moisture–stratiform instability for convectively coupled waves. J. Atmos. Sci., 65 , 834854.

  • Kuang, Z. M., P. N. Blossery, and C. S. Bretherton, 2005: A new approach for 3D cloud-resolving simulations of large-scale atmospheric circulation. Geophys. Res. Lett., 32 .L02809, doi:10.1029/2004GL021024.

    • Search Google Scholar
    • Export Citation
  • Lin, J-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19 , 26652690.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31 , 156179.

  • Louis, J., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Madden, R., and P. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. Julian, 1972: Description of global scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. Julian, 1994: Observations of the tropical 40–50-day oscillation—Review. Mon. Wea. Rev., 122 , 814837.

  • Madden, R., and P. Julian, 2005: Historical perspective. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K.-M. Lau and D. Waliser, Eds., Springer-Praxis, 1–18.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and M. G. Shefter, 2001: Models for stratiform instability and convectively coupled waves. J. Atmos. Sci., 58 , 15671584.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., B. Khouider, G. N. Kiladis, K. H. Straub, and M. G. Shefter, 2004: A model for convectively coupled tropical waves: Nonlinearity, rotation, and comparison with observations. J. Atmos. Sci., 61 , 21882205.

    • Search Google Scholar
    • Export Citation
  • Maloney, E., and D. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11 , 23872403.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57 , 15151535.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., T. S. L’Ecuyer, and C. D. Kummerow, 2006: The Madden–Julian oscillation recorded in early observations from the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Sci., 63 , 27772794.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44B , 2543.

  • Matthews, A. J., 2000: Propagation mechanisms for the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 126 , 26372651.

  • Matthews, A. J., and J. Lander, 1999: Physical and numerical contributions to the structure of Kelvin wave-CISK modes in a spectral transform model. J. Atmos. Sci., 56 , 40504058.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 61 , 15211538.

    • Search Google Scholar
    • Export Citation
  • Miura, H., H. Tomita, T. Nasuno, S. Iga, and M. Satoh, 2005: A climate sensitivity test using a global cloud resolving model under an aqua planet condition. Geophys. Res. Lett., 32 .L19717, doi:10.1029/2005GL023672.

    • Search Google Scholar
    • Export Citation
  • Miura, H., M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi, 2007a: A Madden–Julian oscillation event simulated using a global cloud-resolving model. Science, 318 , 17631765.

    • Search Google Scholar
    • Export Citation
  • Miura, H., H. Tomita, M. Satoh, A. T. Noda, T. Nasuno, and S. Iga, 2007b: A short-duration global cloud-resolving simulation under a realistic land and sea distribution. Geophys. Res. Lett., 34 .L02804, doi:10.1029/2006GL027448.

    • Search Google Scholar
    • Export Citation
  • Murata, F., M. D. Yamanaka, H. Hashiguchi, S. Mori, M. Kudsy, T. Sribimawati, B. Suhardi, and Emrizal, 2006: Dry intrusions following eastward-propagating synoptic-scale cloud systems over Sumatera Island. J. Meteor. Soc. Japan, 84 , 277294.

    • Search Google Scholar
    • Export Citation
  • Nakajima, K., E. Toyoda, M. Ishiwatari, S. Takehiro, and Y-Y. Hayashi, 2004: Initial development of tropical precipitation patterns in response to a local warm SST area: An aqua-planet ensemble study. J. Meteor. Soc. Japan, 82 , 14831504.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1986: Mean features of 30–60 day variations as inferred from 8-year OLR data. J. Meteor. Soc. Japan, 64 , 777786.

  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66 , 823839.

    • Search Google Scholar
    • Export Citation
  • Nasuno, T., H. Tomita, S. Iga, H. Miura, and M. Satoh, 2007: Multiscale organization of convection simulated with explicit cloud processes on an aquaplanet. J. Atmos. Sci., 64 , 19021921.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and B. J. Hoskins, 2001: A standard test for AGCMs including their physical parameterizations. I: The proposal. Atmos. Sci. Lett., 1 , 101107.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44 , 23412348.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., and Y-Y. Hayashi, 1991a: Behavior of cumulus activity and the structures of circulations in an “aqua planet” model. Part I: The structure of the super clusters. J. Meteor. Soc. Japan, 69 , 541561.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., and Y-Y. Hayashi, 1991b: Behavior of cumulus activity and the structures of circulations in an “aqua planet” model. Part II: Eastward-moving planetary scale structure and the intertropical convergence zone. J. Meteor. Soc. Japan, 69 , 563579.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi, 1997: Description of CCSR/NIES atmospheric general circulation model. CGER Supercomputing Monogr. Rep. 3, National Institute for Environmental Studies, Ibaraki, Japan, 48 pp.

  • Oouchi, K., 1999: Hierarchical organization of super cloud cluster caused by WISHE, convectively induced gravity waves and cold pool. J. Meteor. Soc. Japan, 77 , 907927.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., and M. Yamasaki, 1997: Kelvin wave-CISK controlled by surface friction; a possible mechanism of super cloud cluster. Part I: Linear theory. J. Meteor. Soc. Japan, 75 , 497511.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., and M. Yamasaki, 2001: An MJO-like gravity wave and superclusters simulated in a two-dimensional cumulus-scale-resolving model. J. Meteor. Soc. Japan, 79 , 201218.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126 , 889898.

  • Raymond, D. J., and D. J. Torres, 1998: Fundamental moist modes of the equatorial troposphere. J. Atmos. Sci., 55 , 17711790.

  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61 , 21052132.

  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47 , 357379.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the Tropics. J. Atmos. Sci., 51 , 22202237.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., R. R. Garcia, and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51 , 23442367.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., 2002: Conservative scheme for the compressible nonhydrostatic models with the horizontally explicit and vertically implicit time integration scheme. Mon. Wea. Rev., 130 , 12271245.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., 2003: Conservative scheme for a compressible nonhydrostatic model with moist processes. Mon. Wea. Rev., 131 , 10331050.

  • Satoh, M., H. Tomita, H. Miura, S. Iga, and T. Nasuno, 2005: Development of a global cloud-resolving model—A multi-scale structure of tropical convections. J. Earth Simulator., 3 , 1119.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Nasuno, H. Miura, H. Tomita, S. Iga, and Y. Takayabu, 2007: Precipitation statistics comparison between global cloud resolving simulation with NICAM and TRMM PR data. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 99–109.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud-resolving simulations. J. Comput. Phys., in press.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., P. M. Innes, and K. R. Sperber, 2005: Modeling. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K.-M. Lau and D. Waliser, Eds., Springer-Praxis, 361–388.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59 , 3053.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003a: Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon. Wea. Rev., 131 , 945960.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003b: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60 , 16551668.

    • Search Google Scholar
    • Export Citation
  • Suzuki, T., Y. N. Takayabu, and S. Emori, 2006: Coupling mechanisms between equatorial waves and cumulus convection in an AGCM. Dyn. Atmos. Oceans, 42 , 81106.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72 , 433449.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and M. Murakami, 1991: The structure of super cloud clusters observed in 1–20 June 1986 and their relationship to easterly waves. J. Meteor. Soc. Japan, 69 , 105125.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., T. Iguchi, M. Kachi, A. Shibata, and H. Kanazawa, 1999: Abrupt termination of the 1997–98 El Niño in response to a Madden–Julian oscillation. Nature, 402 , 279282.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34 , 357400.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., H. Miura, S. Iga, T. Nasuno, and M. Satoh, 2005: A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32 .L08805, doi:10.1029/2005GL022459.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58 , 529545.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., D. Randall, and B. Mapes, 2007: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci., 64 , 12101229.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of moist Kelvin wave. J. Atmos. Sci., 45 , 20512065.

  • Wang, B., 2005: Theory. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K.-M. Lau and D. Waliser, Eds., Springer-Praxis, 307–360.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47 , 397413.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51 , 13861400.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613639.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2001: The organization of tropical convection by intraseasonal sea surface temperature anomalies. Quart. J. Roy. Meteor. Soc., 127 , 887907.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., and A. Kubokawa, 1990: On the wave-CISK in the presence of a frictional boundary layer. J. Meteor. Soc. Japan, 68 , 651657.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., A. Kubokawa, and K. Hanawa, 1993: Evaporation–wind feedback and the organization of tropical convection on the planetary scale. Part II: Nonlinear evolution. J. Atmos. Sci., 50 , 38843893.

    • Search Google Scholar
    • Export Citation
  • Yamasaki, M., 1969: Large-scale disturbances in the conditionally unstable atmosphere in low latitudes. Pap. Meteor. Geophys., 20 , 289336.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., B. Chen, and W-W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57 , 23742396.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., B. Hoskins, and J. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60 , 16371654.

    • Search Google Scholar
    • Export Citation
  • Yano, J-I., J. C. McWilliams, M. W. Moncrieff, and K. A. Emanuel, 1995: Hierarchical tropical cloud systems in an analog shallow-water model. J. Atmos. Sci., 52 , 17231742.

    • Search Google Scholar
    • Export Citation
  • Yoshizaki, M., 1991: Selective amplification of the eastward-propagating mode in a positive-only wave-CISK model on an equatorial beta-plane. J. Meteor. Soc. Japan, 69 , 353373.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4601 857 360
PDF Downloads 184 73 7