Why Precipitation Is Mostly Concentrated over Islands in the Maritime Continent

Jian-Hua Qian International Research Institute for Climate and Society (IRI), Columbia University, Palisades, New York

Search for other papers by Jian-Hua Qian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-resolution observations and regional climate model simulations reveal that precipitation over the Maritime Continent is mostly concentrated over islands. Analysis of the diurnal cycles of precipitation and winds indicates that this is predominantly caused by sea-breeze convergence over islands, reinforced by mountain–valley winds and further amplified by the cumulus merger processes. Comparison of a regional climate model control simulation to a flat-island run and an all-ocean run demonstrates that the underrepresentation of islands and terrain in the Maritime Continent weakens the atmospheric disturbance associated with the diurnal cycle, and hence underestimates precipitation. The implication of these regional modeling results is that systematic errors in coarse-resolution global circulation models probably result from insufficient representation of land–sea breezes associated with the complex topography in the Maritime Continent. It is found that precipitation in the Maritime Continent, simulated by a global model, is indeed smaller than observed. The simulated upper-atmospheric velocity potential, which represents large-scale tropospheric heating, was substantially displaced eastward compared to observations. Possible approaches toward solving this problem are suggested.

Corresponding author address: Dr. Jian-Hua (Joshua) Qian, IRI, The Earth Institute at Columbia University, Lamont Campus, 61 Route 9W, Palisades, NY 10964-8000. Email: jqian@iri.columbia.edu

Abstract

High-resolution observations and regional climate model simulations reveal that precipitation over the Maritime Continent is mostly concentrated over islands. Analysis of the diurnal cycles of precipitation and winds indicates that this is predominantly caused by sea-breeze convergence over islands, reinforced by mountain–valley winds and further amplified by the cumulus merger processes. Comparison of a regional climate model control simulation to a flat-island run and an all-ocean run demonstrates that the underrepresentation of islands and terrain in the Maritime Continent weakens the atmospheric disturbance associated with the diurnal cycle, and hence underestimates precipitation. The implication of these regional modeling results is that systematic errors in coarse-resolution global circulation models probably result from insufficient representation of land–sea breezes associated with the complex topography in the Maritime Continent. It is found that precipitation in the Maritime Continent, simulated by a global model, is indeed smaller than observed. The simulated upper-atmospheric velocity potential, which represents large-scale tropospheric heating, was substantially displaced eastward compared to observations. Possible approaches toward solving this problem are suggested.

Corresponding author address: Dr. Jian-Hua (Joshua) Qian, IRI, The Earth Institute at Columbia University, Lamont Campus, 61 Route 9W, Palisades, NY 10964-8000. Email: jqian@iri.columbia.edu

Save
  • Atkins, N. T., and R. M. Wakimoto, 1997: Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon. Wea. Rev., 125 , 21122130.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. W. Wilson, T. D. Keenan, and J. M. Hacker, 2000: Tropical island convection in the absence of significant topography. Part I: Life cycle of diurnally forced convection. Mon. Wea. Rev., 128 , 34593480.

    • Search Google Scholar
    • Export Citation
  • Chang, C-P., Z. Wang, J. McBride, and C. Liu, 2005: Annual cycle of Southeast Asia–Maritime Continent rainfall and the asymmetric monsoon transition. J. Climate, 18 , 287301.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, 72 pp.

  • Dinku, T., P. Ceccato, E. Grover-Kopec, M. Lemma, S. J. Connor, and C. F. Ropelewski, 2007: Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens., 28 , 15031526.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and M. Zivkovic-Rothman, 1999: Development and evaluation of a convective scheme for use in climate models. J. Atmos. Sci., 56 , 17661782.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., 2005: Convective initiation ahead of sea-breeze front. Mon. Wea. Rev., 133 , 264278.

  • Gadgil, S., and S. Sajani, 1998: Monsoon precipitation in the AMIP runs. Climate Dyn., 14 , 659689.

  • Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993: Development of the second-generation Regional Climate Model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121 , 27942813.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., J. S. Pal, X. Bi, L. Sloan, N. Elguindi, and F. Solmon, 2006: Introduction to the TAC special issue: The RegCNET network. Theor. Appl. Climatol., 86 , 14.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41 , 113121.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., and P. J. Lamb, 2004: Climate dynamics of atmosphere and ocean in the equatorial zone: A synthesis. Int. J. Climatol., 24 , 16011612.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., M. L. Blackmon, and M. Ting, 1992: Simulating the atmospheric response to the 1985–87 El Niño cycle. J. Climate, 5 , 669682.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and T. D. Keenan, 1980: Diurnal variations of convection over the “Maritime Continent”. Mon. Wea. Rev., 108 , 223225.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., S. G. Geotis, F. D. Marks Jr., and A. K. West, 1981: Winter monsoon convection in the vicinity of north Borneo. Part I: Structure and time variation of clouds and precipitation. Mon. Wea. Rev., 109 , 15951614.

    • Search Google Scholar
    • Export Citation
  • Hughes, M., A. Hall, and R. G. Fovell, 2007: Dynamical controls on the diurnal cycle of temperature in complex topography. Climate Dyn., 29 , 277292.

    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and T. Yasunari, 2006: Time–space characteristics of diurnal rainfall over Borneo and surrounding oceans as observed by TRMM-PR. J. Climate, 19 , 12381260.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., V. E. Kousky, and R. J. Joyce, 2005: Diurnal cycle of precipitation determined from the CMORPH high spatial and temporal resolution global precipitation analyses. J. Geophys. Res., 110 .D23105, doi:10.1029/2005JD006156.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and Coauthors, 2006: The new Hadley Centre climate model (HadGEM1): Evaluation of coupled simulations. J. Climate, 19 , 13271353.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and D. L. Priegnitz, 1981: Winter monsoon convection in the vicinity of north Borneo. Part II: Effects on large-scale fields. Mon. Wea. Rev., 109 , 16151628.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Keenan, T., and Coauthors, 2000: The Maritime Continent Thunderstorm Experiment (MCTEX): Overview and some results. Bull. Amer. Meteor. Soc., 81 , 24332455.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model (CCM3). J. Climate, 11 , 13071326.

    • Search Google Scholar
    • Export Citation
  • Kitada, T., and K. Igarashi, 1986: Numerical analysis of air pollution in a combined field of land/sea breeze and mountain/valley wind. J. Climate Appl. Meteor., 25 , 767784.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Lorenz, P., and D. Jacob, 2005: Influence of regional scale information on the global circulation: A two-way nesting climate simulation. Geophys. Res. Lett., 32 .L18706, doi:10.1029/2005GL023351.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131 , 830844.

    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatra island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132 , 20212039.

    • Search Google Scholar
    • Export Citation
  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16 , 834848.

  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16 , 14561475.

    • Search Google Scholar
    • Export Citation
  • Nitis, T., D. Kitsou, Z. B. Klaic, M. T. Prtenjak, and N. Moussiopoulos, 2005: The effects of basic flow and topography on the development of the sea breeze over a complex coastal environment. Quart. J. Roy. Meteor. Soc., 131 , 305327.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., E. E. Small, and E. A. B. Eltahir, 2000: Simulation of regional scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res., 105 , 2957929594.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over south Florida. Mon. Wea. Rev., 102 , 115139.

  • Prandtl, L., 1952: Essentials of Fluid Mechanics. Blakie and Son, 451 pp.

  • Qian, J-H., F. H. M. Semazzi, and J. S. Scroggs, 1998: A global nonhydrostatic semi-Lagrangian atmospheric model with orography. Mon. Wea. Rev., 126 , 747771.

    • Search Google Scholar
    • Export Citation
  • Qian, J-H., F. Giorgi, and M. S. Fox-Rabinovitz, 1999: Regional stretched grid generation and its application to the NCAR RegCM. J. Geophys. Res., 104 , 65016513.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “maritime continent” in the atmospheric circulation. Mon. Wea. Rev., 96 , 365370.

  • Rampanelli, G., D. Zardi, and R. Rotunno, 2004: Mechanisms of up-valley winds. J. Atmos. Sci., 61 , 30973111.

  • Riehl, H., 1954: Tropical Meteorology. McGraw-Hill, 392 pp.

  • Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6 , 503538.

  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM4: Model description and present-day climate. Max-Planck-Institut für Meteorologie Rep. 218, Hamburg, Germany, 90 pp.

  • Saito, K., T. Keenan, G. Holland, and K. Puri, 2001: Numerical simulation of the diurnal evolution of tropical island convection over the Maritime Continent. Mon. Wea. Rev., 129 , 378400.

    • Search Google Scholar
    • Export Citation
  • Sato, T., 2004: The current status of the Earth Simulator. J. Earth Simulator, 1 , 67.

  • Semazzi, F. H. M., J-H. Qian, and J. S. Scroggs, 1995: A global nonhydrostatic semi-Lagrangian atmospheric model without orography. Mon. Wea. Rev., 123 , 25342550.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., N. E. Westcott, R. J. Clerman, and R. A. Pielke, 1980: On cumulus mergers. Arch. Meteor. Geophys. Bioklim., 29A , 140.

  • Simpson, J., T. D. Keenan, B. Ferrier, R. H. Simpson, and G. J. Holland, 1993: Cumulus merger in the Maritime Continent region. Meteor. Atmos. Phys., 51 , 7399.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1996: Diurnal changes in sea-breeze direction. J. Appl. Meteor., 35 , 11661169.

  • Tao, W-K., and Coauthors, 2006: Retrieval of latent heating from TRMM measurements. Bull. Amer. Meteor. Soc., 87 , 15551572.

  • Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12 , 13681381.

  • Wai, M. M-K., P. T. Welsh, and W-M. Ma, 1996: Interaction of secondary circulations with the summer monsoon and diurnal rainfall over Hong Kong. Bound.-Layer Meteor., 81 , 123146.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., C. A. Clayson, and J. A. Curry, 1996: Clouds, radiation, and the diurnal cycle of the sea surface temperature in the tropical western Pacific. J. Climate, 9 , 17121730.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181 , 262264.

  • Xie, P., and P. A. Arkin, 1996: Analysis of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., and J. Slingo, 2001: The diurnal cycle in the Tropics. Mon. Wea. Rev., 129 , 784801.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5265 2262 98
PDF Downloads 2543 444 23