Large-Eddy Simulations and Observations of Atmospheric Marine Boundary Layers above Nonequilibrium Surface Waves

Peter P. Sullivan National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Peter P. Sullivan in
Current site
Google Scholar
PubMed
Close
,
James B. Edson Department of Marine Sciences, University of Connecticut, Groton, Connecticut

Search for other papers by James B. Edson in
Current site
Google Scholar
PubMed
Close
,
Tihomir Hristov Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Tihomir Hristov in
Current site
Google Scholar
PubMed
Close
, and
James C. McWilliams Department of Atmospheric and Oceanic Sciences, and the Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Winds and waves in marine boundary layers are often in an unsettled state when fast-running swell generated by distant storms propagates into local regions and modifies the overlying turbulent fields. A large-eddy simulation (LES) model with the capability to resolve a moving sinusoidal wave at its lower boundary is developed to investigate this low-wind/fast-wave regime. It is used to simulate idealized situations with wind following and opposing fast-propagating waves (swell), and stationary bumps. LES predicts momentum transfer from the ocean to the atmosphere for wind following swell, and this can greatly modify the turbulence production mechanism in the marine surface layer. In certain circumstances the generation of a low-level jet reduces the mean shear between the surface layer and the PBL top, resulting in a near collapse of turbulence in the PBL. When light winds oppose the propagating swell, turbulence levels increase over the depth of the boundary layer and the surface drag increases by a factor of 4 compared to a flat surface. The mean wind profile, turbulence variances, and vertical momentum flux are then dependent on the state of the wave field. The LES results are compared with measurements from the Coupled Boundary Layers Air–Sea Transfer (CBLAST) field campaign. A quadrant analysis of the momentum flux from CBLAST verifies a wave age dependence predicted by the LES solutions. The measured bulk drag coefficient CD then depends on wind speed and wave state. In situations with light wind following swell, CD is approximately 50% lower than values obtained from standard bulk parameterizations that have no sea state dependence. In extreme cases with light wind and persistent swell, CD < 0.

Corresponding author address: Peter P. Sullivan, MMM Division, NCAR, Boulder, CO 80307-3000. Email: pps@ucar.edu

Abstract

Winds and waves in marine boundary layers are often in an unsettled state when fast-running swell generated by distant storms propagates into local regions and modifies the overlying turbulent fields. A large-eddy simulation (LES) model with the capability to resolve a moving sinusoidal wave at its lower boundary is developed to investigate this low-wind/fast-wave regime. It is used to simulate idealized situations with wind following and opposing fast-propagating waves (swell), and stationary bumps. LES predicts momentum transfer from the ocean to the atmosphere for wind following swell, and this can greatly modify the turbulence production mechanism in the marine surface layer. In certain circumstances the generation of a low-level jet reduces the mean shear between the surface layer and the PBL top, resulting in a near collapse of turbulence in the PBL. When light winds oppose the propagating swell, turbulence levels increase over the depth of the boundary layer and the surface drag increases by a factor of 4 compared to a flat surface. The mean wind profile, turbulence variances, and vertical momentum flux are then dependent on the state of the wave field. The LES results are compared with measurements from the Coupled Boundary Layers Air–Sea Transfer (CBLAST) field campaign. A quadrant analysis of the momentum flux from CBLAST verifies a wave age dependence predicted by the LES solutions. The measured bulk drag coefficient CD then depends on wind speed and wave state. In situations with light wind following swell, CD is approximately 50% lower than values obtained from standard bulk parameterizations that have no sea state dependence. In extreme cases with light wind and persistent swell, CD < 0.

Corresponding author address: Peter P. Sullivan, MMM Division, NCAR, Boulder, CO 80307-3000. Email: pps@ucar.edu

Save
  • Adrian, R. J., and Z. C. Liu, 2002: Observation of vortex packets in direct numerical simulation of fully turbulent channel flow. J. Visualization, 5 , 919.

    • Search Google Scholar
    • Export Citation
  • Alves, J. H. G. M., M. L. Banner, and I. R. Young, 2003: Revisiting the Pierson–Moskowitz asymptotic limits for fully developed wind waves. J. Phys. Oceanogr., 33 , 13011323.

    • Search Google Scholar
    • Export Citation
  • Anderson, D. A., J. C. Tannehill, and R. H. Pletcher, 1984: Computational Fluid Mechanics and Heat Transfer. McGraw-Hill, 599 pp.

  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118 , 247272.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and J. C. R. Hunt, 1998: Turbulent flow over hills and waves. Annu. Rev. Fluid Mech., 30 , 507538.

  • Chambers, A. J., and R. A. Antonia, 1981: Wave-induced effect on the Reynolds shear stress and heat flux in the marine surface layer. J. Phys. Oceanogr., 11 , 116121.

    • Search Google Scholar
    • Export Citation
  • Churchill, J. H., A. J. Plueddemann, and S. M. Faluotico, 2006: Extracting wind sea and swell from directional wave spectra derived from a bottom-mounted ADCP. Woods Hole Oceanographic Institution Tech. Rep. WHOI-2006-13, 41 pp.

  • Cohen, J. E., and S. E. Belcher, 1999: Turbulent shear flow over fast-moving waves. J. Fluid Mech., 386 , 345371.

  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18 , 495527.

  • Dimitropoulos, C. D., B. J. Edwards, K-S. Chae, and A. N. Beris, 1998: Efficient pseudospectral flow simulations in moderately complex geometries. J. Comput. Phys., 144 , 517549.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1998: Air-water exchange processes. Physical Processes in Lakes and Oceans, J. Imberger, Ed., Vol. 54, Coastal and Estuarine Studies, Amer. Geophys. Union, 19–36.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., and W. J. Pierson, 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92 , 49715029.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., W. M. Drennan, and K. B. Katsaros, 1997: The air–sea momentum flux in conditions of wind sea and swell. J. Phys. Oceanogr., 27 , 20872099.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., K. K. Kahma, and M. A. Donelan, 1999: On momentum flux and velocity spectra over waves. Bound.-Layer Meteor., 92 , 489515.

    • Search Google Scholar
    • Export Citation
  • Edson, J., C. W. Fairall, and P. P. Sullivan, 2006: Evaluation and continued improvements to the TOGA COARE 3.0 bulk flux algorithm using CBLAST data. Preprints. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 7C.1. [Available online at http://ams.confex.com/ams/pdfpapers/108533.pdf.].

    • Search Google Scholar
    • Export Citation
  • Edson, J., and Coauthors, 2007: The coupled boundary layers and air–sea transfer experiment in low winds. Bull. Amer. Meteor. Soc., 88 , 341356.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Gent, P. R., 1977: A numerical model of the air flow above water waves. Part 2. J. Fluid Mech., 82 , 349369.

  • Gent, P. R., and P. A. Taylor, 1976: A numerical model of the air flow above water waves. J. Fluid Mech., 77 , 105128.

  • Geurts, B. J., 2001: Modern Simulation Strategies for Turbulent Flow. R. T. Edwards, 327 pp.

  • Grachev, A. A., and C. W. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr., 31 , 16981711.

  • Grachev, A. A., C. W. Fairall, J. E. Hare, J. B. Edson, and S. D. Miller, 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33 , 24082429.

    • Search Google Scholar
    • Export Citation
  • Hanson, J. L., and O. M. Phillips, 2001: Automated analysis of ocean surface directional wave spectra. J. Atmos. Oceanic Technol., 18 , 277293.

    • Search Google Scholar
    • Export Citation
  • Harris, D. L., 1966: The wave-driven wind. J. Atmos. Sci., 23 , 688693.

  • Hatlee, S. C., and J. C. Wyngaard, 2007: Improved subfilter-scale models from the HATS field data. J. Atmos. Sci., 64 , 16941705.

  • Holland, J. Z., W. Chen, J. A. Almazan, and F. C. Elder, 1981: Atmospheric boundary layer. IFYGL—The International Field Year for the Great Lakes, E. J. Aubert and T. L. Richards, Eds., NOAA–GLERL, U.S. Dept. of Commerce, 109–167.

    • Search Google Scholar
    • Export Citation
  • Hommema, S. E., and R. J. Adrian, 2003: Packet structure of surface eddies in the atmospheric boundary layer. Bound.-Layer Meteor., 106 , 147170.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111 , 430444.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2004: Impact of swell on the marine atmospheric boundary layer. J. Phys. Oceanogr., 34 , 934949.

  • Li, P. Y., 1995: A numerical study on energy transfer between turbulent air flow and finite amplitude water waves. Ph.D. thesis, York University, 181 pp.

  • Lighthill, M. J., 1978: Waves in Fluids. Cambridge University Press, 504 pp.

  • Lin, C-L., J. C. McWilliams, C-H. Moeng, and P. P. Sullivan, 1996: Coherent structures and dynamics in a neutrally stratified planetary boundary layer flow. Phys. Fluids, 8 , 26262639.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., and C. Mastenbroek, 1996: Impact of waves on air-sea exchange of sensible heat and momentum. Bound.-Layer Meteor., 79 , 279300.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and N. S. Callen, 1986: On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow. J. Fluid Mech., 162 , 439462.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and D. J. Thomson, 1992: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech., 242 , 5178.

    • Search Google Scholar
    • Export Citation
  • Meneveau, C., and J. Katz, 2000: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech., 32 , 132.

  • Miller, S. D., 1999: The structure of turbulent and wave-induced wind fields over open-ocean waves. Ph.D. thesis, University of California, Irvine, 221 pp.

  • Moeng, C-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41 , 20522062.

  • Moeng, C-H., and J. C. Wyngaard, 1988: Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci., 45 , 35733587.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., and J. C. Wyngaard, 1989: Evaluation of turbulent transport and dissipation closures in second-order modeling. J. Atmos. Sci., 46 , 23112330.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51 , 9991022.

    • Search Google Scholar
    • Export Citation
  • Nakayama, A., H. Noda, and K. Maeda, 2004: Similarity of instantaneous and filtered velocity fields in the near wall region of zero-pressure gradient boundary layer. Fluid Dyn. Res., 35 , 299321.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1982: A relationship between wind stress and wave slope. J. Geophys. Res., 87 , 19611967.

  • Rutgersson, A., A-S. Smedman, and U. Högström, 2001: Use of conventional stability parameters during swell. J. Geophys. Res., 106 , 2711727134.

    • Search Google Scholar
    • Export Citation
  • Saiki, E. M., C-H. Moeng, and P. P. Sullivan, 2000: Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Layer Meteor., 95 , 130.

    • Search Google Scholar
    • Export Citation
  • Scotti, A., C. Meneveau, and D. K. Lilly, 1993: Generalized Smagorinsky model for anisotropic grids. Phys. Fluids A, 5 , 23062308.

  • Smedman, A-S., M. Tjernström, and U. Högström, 1994: The near-neutral marine atmospheric boundary layer with no surface shearing stress: A case study. J. Atmos. Sci., 51 , 33993411.

    • Search Google Scholar
    • Export Citation
  • Smedman, A-S., U. Högström, and H. Bergström, 1997: The turbulence regime of a very stable marine airflow with quasi-frictional decoupling. J. Geophys. Res., 102 , 2104921060.

    • Search Google Scholar
    • Export Citation
  • Smedman, A-S., U. Högström, H. Bergström, A. Rutgersson, K. K. Kahma, and H. Pettersson, 1999: A case study of air-sea interaction during swell conditions. J. Geophys. Res., 104 , 2583325852.

    • Search Google Scholar
    • Export Citation
  • Smedman, A-S., U. Högström, and A. Sjöblom, 2003: A note on velocity spectra in the marine boundary layer. Bound.-Layer Meteor., 109 , 2748.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2002: Turbulent flow over water waves in the presence of stratification. Phys. Fluids, 14 , 11821195.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71 , 247276.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C-H. Moeng, 1996: A grid nesting method for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 80 , 167202.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C-H. Moeng, 2000: Simulation of turbulent flow over idealized water waves. J. Fluid Mech., 404 , 4785.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., T. W. Horst, D. H. Lenschow, C-H. Moeng, and J. C. Weil, 2003: Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J. Fluid Mech., 482 , 101139.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. B. Edson, J. C. McWilliams, and C-H. Moeng, 2004: Large-eddy simulations and observations of wave-driven boundary layers. Preprints. 16th Symp. on Boundary Layers and Turbulence, Portland, ME, Amer. Meteor. Soc., 8.12. [Available online at http://ams.confex.com/ams/pdfpapers/78119.pdf.].

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. B. Edson, T. W. Horst, J. C. Wyngaard, and M. Kelly, 2006a: Subfilter scale fluxes in the marine surface layer: Results from the Ocean Horizontal Array Turbulence Study (OHATS). Preprints. 17th Symp. on Boundary Layers and Turbulence, San Diego, CA, Amer. Meteor. Soc., 4.1.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. B. Edson, T. Hristov, and J. C. McWilliams, 2006b: Momentum flux structures and statistics in low-wind marine surface layers: Observations and large-eddy simulations. Preprints. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 7C.6. [Available online at http://ams.confex.com/ams/pdfpapers/110884.pdf.].

    • Search Google Scholar
    • Export Citation
  • Thompson, J. F., Z. U. A. Warsi, and C. W. Mastin, 1985: Numerical Grid Generation: Foundations and Applications. North-Holland, 483 pp.

    • Search Google Scholar
    • Export Citation
  • Wylie, C. R., 1966: Advanced Engineering Mathematics. 3rd ed. McGraw-Hill, 813 pp.

  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita”. J. Atmos. Sci., 61 , 18161826.

  • Wyngaard, J. C., L. J. Peltier, and S. Khanna, 1998: LES in the surface layer: Surface fluxes, scaling, and SGS modeling. J. Atmos. Sci., 55 , 17331754.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2558 1294 105
PDF Downloads 1368 346 37