Arctic Mixed-Phase Clouds Simulated by a Cloud-Resolving Model: Comparison with ARM Observations and Sensitivity to Microphysics Parameterizations

Yali Luo National Institute of Aerospace, and NASA Langley Research Center, Hampton, Virginia

Search for other papers by Yali Luo in
Current site
Google Scholar
PubMed
Close
,
Kuan-Man Xu NASA Langley Research Center, Hampton, Virginia

Search for other papers by Kuan-Man Xu in
Current site
Google Scholar
PubMed
Close
,
Hugh Morrison National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
, and
Greg McFarquhar University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Greg McFarquhar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Single-layer mixed-phase stratiform (MPS) Arctic clouds, which formed under conditions of large surface heat flux combined with general subsidence during a subperiod of the Atmospheric Radiation Measurement (ARM) Program’s Mixed-Phase Arctic Cloud Experiment (MPACE), are simulated with a cloud-resolving model (CRM). The CRM is implemented with either an advanced two-moment [Morrison et al. (MCK)] or a commonly used one-moment [Lin et al. (LFO)] bulk microphysics scheme and a state-of-the-art radiative transfer scheme.

The MCK simulation, which uses the two-moment scheme and observed aerosol size distribution and ice nulei (IN) number concentration, reproduces the magnitudes and vertical structures of cloud liquid water content (LWC), total ice water content (IWC), and number concentration and effective radius of cloud droplets as suggested by the MPACE observations. The simulation underestimates ice crystal number concentrations by an order of magnitude and overestimates effective radius of ice crystals by a factor of 2–3. The LFO experiment, which uses the one-moment scheme, produces values of liquid water path (LWP) and ice plus snow water path (ISWP) that were about 30% and 4 times, respectively, those produced by MCK. The vertical profile of IWC exhibits a bimodal distribution in contrast to the constant distribution of IWC produced in MCK and observations.

A sensitivity test that uses the same ice–water saturation adjustment scheme as in LFO produces cloud properties that are more similar to the LFO simulation than MCK. The mean value of the intercept parameter of snow size spectra (N0s) from MCK is one order of magnitude smaller than that assumed in LFO. A sensitivity test that prescribes the larger LFO N0s results in 20% less LWP and 5 times larger snow water path than that in MCK. When an exponential ice size distribution replaces the gamma size distribution in MCK, the ISWP decreases by 70% but the LWP increases by 7% versus that in the MCK. Increasing the IN number concentration from the observed value of 0.16 to 3.2 L−1 forces the MPS clouds to become glaciated and dissipate, but the simulated ice number concentration agrees initially with the observations better. Physical explanations for these quantitative differences are provided. It is further shown that the differences between the LFO and MCK results are larger than those due to the estimated uncertainties in the prescribed surface fluxes. Additional observations and simulations of a variety of cases are required to further narrow down uncertainties in the microphysics schemes.

* Current affiliation: State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

+ The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Dr. Yali Luo, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China. Email: yali@cams.cma.gov.cn

Abstract

Single-layer mixed-phase stratiform (MPS) Arctic clouds, which formed under conditions of large surface heat flux combined with general subsidence during a subperiod of the Atmospheric Radiation Measurement (ARM) Program’s Mixed-Phase Arctic Cloud Experiment (MPACE), are simulated with a cloud-resolving model (CRM). The CRM is implemented with either an advanced two-moment [Morrison et al. (MCK)] or a commonly used one-moment [Lin et al. (LFO)] bulk microphysics scheme and a state-of-the-art radiative transfer scheme.

The MCK simulation, which uses the two-moment scheme and observed aerosol size distribution and ice nulei (IN) number concentration, reproduces the magnitudes and vertical structures of cloud liquid water content (LWC), total ice water content (IWC), and number concentration and effective radius of cloud droplets as suggested by the MPACE observations. The simulation underestimates ice crystal number concentrations by an order of magnitude and overestimates effective radius of ice crystals by a factor of 2–3. The LFO experiment, which uses the one-moment scheme, produces values of liquid water path (LWP) and ice plus snow water path (ISWP) that were about 30% and 4 times, respectively, those produced by MCK. The vertical profile of IWC exhibits a bimodal distribution in contrast to the constant distribution of IWC produced in MCK and observations.

A sensitivity test that uses the same ice–water saturation adjustment scheme as in LFO produces cloud properties that are more similar to the LFO simulation than MCK. The mean value of the intercept parameter of snow size spectra (N0s) from MCK is one order of magnitude smaller than that assumed in LFO. A sensitivity test that prescribes the larger LFO N0s results in 20% less LWP and 5 times larger snow water path than that in MCK. When an exponential ice size distribution replaces the gamma size distribution in MCK, the ISWP decreases by 70% but the LWP increases by 7% versus that in the MCK. Increasing the IN number concentration from the observed value of 0.16 to 3.2 L−1 forces the MPS clouds to become glaciated and dissipate, but the simulated ice number concentration agrees initially with the observations better. Physical explanations for these quantitative differences are provided. It is further shown that the differences between the LFO and MCK results are larger than those due to the estimated uncertainties in the prescribed surface fluxes. Additional observations and simulations of a variety of cases are required to further narrow down uncertainties in the microphysics schemes.

* Current affiliation: State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

+ The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Dr. Yali Luo, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China. Email: yali@cams.cma.gov.cn

Save
  • Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation. 2. Multiple aerosol types. J. Geophys. Res., 105 , 68376844.

    • Search Google Scholar
    • Export Citation
  • Abdul-Razzak, H., S. J. Ghan, and C. Rivera-Carpio, 1998: A parameterization of aerosol activation. 1. Single aerosol types. J. Geophys. Res., 103 , 61236131.

    • Search Google Scholar
    • Export Citation
  • Ackerman, T., and G. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56 , 3845.

  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17 , 24932525.

  • Bigg, E. K., and C. Leck, 2001: Cloud-active particles over the central Arctic Ocean. J. Geophys. Res., 106 , 3215532166.

  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivity using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39 , 645665.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9 , 17311764.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81 , 529.

  • Curry, J. A., J. Maslanik, G. Holland, and J. Pinto, 2004: Applications of Aerosondes in the Arctic. Bull. Amer. Meteor. Soc., 85 , 18551861.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51 , 249280.

  • Fridlind, A. M., A. S. Ackerman, G. McFarquhar, G. Zhang, M. R. Poellot, P. J. DeMott, A. J. Prenni, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment (MPACE): Part II. Model results. J. Geophys. Res., 112 .D24202, doi:10.1029/2007JD008646.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9 , 20582082.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50 , 20082025.

  • Fu, Q., and S. Hollars, 2004: Testing mixed-phase cloud water vapor parameterizations with SHEBA/FIRE–ACE observations. J. Atmos. Sci., 61 , 20832091.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., P. Yang, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11 , 22232237.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60 , 847864.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Meteor., 15 , 452461.

  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249 , 2628.

  • Harrington, J. Y., and P. Q. Olsson, 2001: On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics. J. Geophys. Res., 106 , 2747327486.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., and J. Verlinde, 2004: Mixed-phase Arctic Clouds Experiment (MPACE). Scientific overview document, U.S. Dept. of Energy, 20 pp. [Available online at http://nsa.met.psu.edu/verlinde/mpace/sciencedoc.pdf.].

  • Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud resolving simulations of Arctic stratus. Part II: Transition-season clouds. Atmos. Res., 55 , 4575.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1998: Microstructure of low- and middle-level clouds over the Beaufort Sea. Quart. J. Roy. Meteor. Soc., 124 , 20352071.

    • Search Google Scholar
    • Export Citation
  • Ikawa, M., and K. Saito, 1991: Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. Meteorological Research Institute Tech. Rep. 28, 238 pp. [Available online at http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_28/28_en.html.].

  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107 .8030, doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, 2000: Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57 , 21052117.

    • Search Google Scholar
    • Export Citation
  • Jin, Z., T. P. Charlock, W. L. Smith Jr., and K. Rutledge, 2004: A parameterization of ocean surface albedo. Geophys. Res. Lett., 31 .L22301, doi:10.1029/2004GL021180.

    • Search Google Scholar
    • Export Citation
  • Klein, S., and Coauthors, 2006: ARM Cloud Parameterization and Modeling Working Group–GCSS Polar Cloud Working Group model intercomparison: ARM Mixed-phase Arctic Cloud Experiment (MPACE), October 5–22, 2004, 34 pp. [Available online at http://science.arm.gov/workinggroup/cpm/scm/scmic5/index.html.].

  • Krueger, S. K., 1988: Numerical simulation of tropical cumulus clouds and their interaction with the subcloud layer. J. Atmos. Sci., 45 , 22212250.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., Q. Fu, K. N. Liou, and H-N. S. Chin, 1995: Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34 , 281287.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41 , 28362848.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., K-M. Xu, B. A. Wielicki, T. Wong, and Z. A. Eitzen, 2007: Statistical analyses of satellite cloud object data from CERES. Part III: Comparison with cloud-resolving model simulations of tropical convective clouds. J. Atmos. Sci., 64 , 762785.

    • Search Google Scholar
    • Export Citation
  • Manton, M. J., and W. R. Cotton, 1977: Formulation of approximate equations for modeling moist deep convection on the mesoscale. Atmospheric Science Paper 266, Colorado State University, 62 pp.

  • McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. Tooman, A. Fridlind, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment. 1. Observations. J. Geophys. Res., 112 .D24201, doi:10.1029/2007JD008633.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45 , 339.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57 , 295311.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. O. Pinto, 2006: Intercomparison of bulk cloud microphysics schemes in mesoscale simulations of springtime Arctic mixed-phase stratiform clouds. Mon. Wea. Rev., 134 , 18801900.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62 , 16651677.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. O. Pinto, J. A. Curry, and M. McFarquhar, 2008: Sensitivity of modeled arctic mixed-phase stratocumulus to cloud condensation and ice nuclei over regionally-varying surace conditions. J. Geophys. Res., 113 .D05203, doi:10.1029/2007JD008729.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., L. J. Donner, and S. T. Garner, 2007: Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J. Atmos. Sci., 64 , 738761.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., K-M. Xu, R. J. C. Somerville, and S. Iacobellis, 1996: Single-column models and cloud ensemble models as links between observations and climate models. J. Climate, 9 , 16831697.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2003: Confronting models with data. The GEWEX Cloud Systems Study. Bull. Amer. Meteor. Soc., 84 , 455469.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 2001: Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations. J. Geophys. Res., 106 , 1506515075.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. Chen, 2001: A continuous-flow diffusion chamber for airborne measurements of ice nuclei. J. Atmos. Oceanic Technol., 18 , 725741.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and Y. Liu, 2003: Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration. J. Climate, 16 , 34763481.

    • Search Google Scholar
    • Export Citation
  • Sirois, A., and L. A. Barrie, 1999: Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995. J. Geophys. Res., 104 , 1159911618.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN–468+STR, 88 pp. [Available online at http://www.wrf-model.org/wrfadmin/publications.php.].

  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Test Bed. Bull. Amer. Meteor. Soc., 75 , 12011221.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117 , 231235.

  • Tomita, H., H. Miura, S. Iga, T. Nasuno, and M. Satoh, 2005: A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32 .L08805, doi:10.1029/2005GL022459.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45 , 36803690.

    • Search Google Scholar
    • Export Citation
  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83 , 255275.

  • Verlinde, J., and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88 , 205221.

  • Wang, Z., 2007: A refined two-channel microwave radiometer liquid water path retrieval for cold regions by using multiple-sensor measurements. IEEE Geosci. Remote Sens. Lett., 45 , 36803690.

    • Search Google Scholar
    • Export Citation
  • Xie, S., S. A. Klein, M. Zhang, J. J. Yio, R. T. Cederwall, and R. McCoy, 2006: Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment. J. Geophys. Res., 111 .D19104, doi:10.1029/2005JD006950.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., 2005: The sensitivity of diagnostic radiative properties to cloud microphysics among cloud-resolving model simulations. J. Atmos. Sci., 62 , 12411254.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and S. K. Krueger, 1991: Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon. Wea. Rev., 119 , 342367.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and D. A. Randall, 1996: Explicit simulation of cumulus ensembles with the GATE phase III data: Comparison with observations. J. Atmos. Sci., 53 , 37103736.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., Q. Fu, and N. McFarlane, 2006: Tests and improvements of GCM cloud parameterizations using the CCCMA SCM with the SHEBA data set. Atmos. Res., 82 , 222238.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and J. L. Lin, 1997: Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements. J. Atmos. Sci., 54 , 15031524.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., J. L. Lin, R. T. Cederwall, J. J. Yio, and S. C. Xie, 2001: Objective analysis of ARM IOP data: Method and sensitivity. Mon. Wea. Rev., 129 , 295311.

    • Search Google Scholar
    • Export Citation
  • Zhou, J., E. Swietlicki, O. H. Berg, P. P. Aalto, K. Hämeri, E. D. Nilsson, and C. Leck, 2001: Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer. J. Geophys. Res., 106 , 3211132124.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2005: An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA. J. Atmos. Sci., 62 , 160176.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1339 967 49
PDF Downloads 329 56 4