• Ackerman, A. S., , O. B. Toon, , D. E. Stevens, , A. J. Heymsfield, , V. Ramanathan, , and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288 , 10421047.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Barker, H. W., 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part I: Methodology and homogeneous biases. J. Atmos. Sci., 53 , 22892303.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112 .D02201, doi:10.1029/2006JD007547.

    • Search Google Scholar
    • Export Citation
  • Benner, T. C., , and K. F. Evans, 2001: Three-dimensional solar radiative transfer in small tropical cumulus fields derived from high-resolution imagery. J. Geophys. Res., 106 , 1497514984.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., 1987: Multiple scattering of light and some of its observable consequences. Amer. J. Phys., 55 , 524533.

  • Cahalan, R. F., and Coauthors, 2005: The I3RC: Bringing together the most advanced radiative transfer codes for cloudy atmospheres. Bull. Amer. Meteor. Soc., 86 , 12751293.

    • Search Google Scholar
    • Export Citation
  • Chambers, L. H., , B. A. Wielicki, , and K. F. Evans, 1997a: Accuracy of the independent pixel approximation for satellite estimates of oceanic boundary layer cloud optical depth. J. Geophys. Res., 102 , 17791794.

    • Search Google Scholar
    • Export Citation
  • Chambers, L. H., , B. A. Wielicki, , and K. F. Evans, 1997b: Independent pixel and two-dimensional estimates of Landsat-derived cloud field albedo. J. Atmos. Sci., 54 , 15251532.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., , S. E. Schwartz, , J. M. Hales, , R. D. Cess, , J. A. Coakley Jr., , J. E. Hansen, , and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255 , 423430.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., , A. S. Ackerman, , F. Bender, , T. L. Anderson, , and Z. Liu, 2007: On the climate forcing consequences of the albedo continuum between cloudy and clear air. Tellus, 59B , 715727.

    • Search Google Scholar
    • Export Citation
  • Chosson, F., , J-L. Brenguier, , and L. Schüller, 2007: Entrainment-mixing and radiative transfer simulation in boundary layer clouds. J. Atmos. Sci., 64 , 26702682.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , R. Boers, , B. Stevens, , and W. R. Cotton, 1997: A modeling study of the effect of drizzle on cloud optical depth and susceptibility. J. Geophys. Res., 102 , 1352713534.

    • Search Google Scholar
    • Export Citation
  • Genkova, I., , G. Seiz, , P. Zuidema, , G. Zhao, , and L. D. Di Girolamo, 2007: Cloud top height comparisons from ASTER, MISR, and MODIS for trade wind cumuli. Remote Sens. Environ., 107 , 211222.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2007: Representation of turbulent mixing and buoyancy reversal in bulk cloud models. J. Atmos. Sci., 64 , 36663680.

  • Han, Q., , W. B. Rossow, , J. Zeng, , and R. Welch, 2002: Three different behaviors of liquid water path of water clouds in aerosol–cloud interactions. J. Atmos. Sci., 59 , 726735.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and G. M. McFarquhar, 2001: Microphysics of INDOEX clean and polluted trade cumulus clouds. J. Geophys. Res., 106 , 2865328673.

    • Search Google Scholar
    • Export Citation
  • Hinkelman, L. M., , K. F. Evans, , E. E. Clothiaux, , T. P. Ackerman, , and P. W. Stackhouse Jr., 2007: The effect of cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rates. J. Atmos. Sci., 64 , 34993520.

    • Search Google Scholar
    • Export Citation
  • Holland, J. Z., , and E. M. Rasmusson, 1973: Measurements of the atmospheric mass, energy, and momentum budgets over a 500-kilometer square of tropical ocean. Mon. Wea. Rev., 101 , 4455.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , and G. Feingold, 2006: The effect of aerosol on warm convective clouds: Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model. J. Geophys. Res., 111 .D01202, doi:10.1029/2005JD006138.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , H. Xue, , A. Teller, , G. Feingold, , and Z. Levin, 2006: Aerosol effects on the lifetime of shallow cumulus. Geophys. Res. Lett., 33 .L14806, doi:10.1029/2006GL026024.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., , I. Koren, , L. A. Remer, , D. Rosenfeld, , and Y. Rudich, 2005: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci. USA, 102 , 1120711212.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , and B. P. Briegleb, 1993: The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 260 , 311314.

    • Search Google Scholar
    • Export Citation
  • Kite, A., 1987: The albedo of broken cloud fields. Quart. J. Roy. Meteor. Soc., 113 , 517531.

  • Koren, I., , L. A. Remer, , Y. J. Kaufman, , Y. Rudich, , and J. V. Martins, 2007: On the twilight zone between clouds and aerosols. Geophys. Res. Lett., 34 .L08805, doi:10.1029/2007GL029253.

    • Search Google Scholar
    • Export Citation
  • Lane, D. E., , K. Goris, , and R. C. J. Somerville, 2002: Radiative transfer through broken clouds: Observations and model validation. J. Climate, 15 , 29212933.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5 , 715737.

  • Matheson, M. A., , J. A. Coakley Jr., , and W. R. Tahnk, 2005: Aerosol and cloud property relationships for summertime stratiform clouds in the northeastern Atlantic from Advanced Very High Resolution Radiometer observations. J. Geophys. Res., 110 .D24204, doi:10.1029/2005JD006165.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., , H. Masunaga, , S. M. Kreidenweis, , R. A. Pielke Sr., , W-K. Tao, , M. Chin, , and Y. J. Kaufman, 2006: Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle. J. Geophys. Res., 111 .D17204, doi:10.1029/2005JD006097.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., , and K. F. Evans, 2004: Clouds and shortwave fluxes at Nauru. Part II: Shortwave flux closure. J. Atmos. Sci., 61 , 26022615.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., , and W. W. Grabowski, 2007: Optical properties of shallow tropical cumuli derived from ARM ground-based remote sensing. Geophys. Res. Lett., 34 .L06808, doi:10.1029/2006GL028767.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , S. Platnick, , L. D. Di Girolamo, , H. Wang, , G. Wind, , and G. Zhao, 2004: Trade wind cumuli statistics in clean and polluted air over the Indian Ocean from in situ and remote sensing measurements. Geophys. Res. Lett., 31 .L21105, doi:10.1029/2004GL020412.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 1998: Low cloud type over the ocean from surface observations. Part II: Geographical and seasonal variations. J. Climate, 11 , 383403.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 2001: Has northern Indian Ocean cloud cover changed due to increasing anthropogenic aerosol? Geophys. Res. Lett., 28 , 32713274.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , and M. Baker, 1994: Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature, 372 , 250252.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , C. Hannay, , and K. F. Evans, 2005: The accuracy of determining three-dimensional radiative transfer effects in cumulus clouds using ground-based profiling instruments. J. Atmos. Sci., 62 , 22842293.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., , and S. Twomey, 1994: Determining the susceptibility of cloud albedo to changes in droplet concentration with the Advanced Very High Resolution Radiometer. J. Appl. Meteor., 33 , 334347.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88 , 19121928.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., , and S. N. Pandis, 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley and Sons, 1326 pp.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60 , 12011219.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , C-H. Moeng, , and P. P. Sullivan, 1999: Large-eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56 , 39633984.

    • Search Google Scholar
    • Export Citation
  • Várnai, T., 2000: Influence of three-dimensional radiative effects on the spatial distribution of shortwave cloud reflection. J. Atmos. Sci., 57 , 216229.

    • Search Google Scholar
    • Export Citation
  • Várnai, T., , and R. Davies, 1999: Effects of cloud heterogeneities on shortwave radiation: Comparison of cloud-top variability and internal heterogeneity. J. Atmos. Sci., 56 , 42064224.

    • Search Google Scholar
    • Export Citation
  • Welch, R., , and B. A. Wielicki, 1984: Stratocumulus cloud field reflected fluxes: The effect of cloud shape. J. Atmos. Sci., 41 , 30853103.

    • Search Google Scholar
    • Export Citation
  • Wen, G., , A. Marshak, , and R. F. Cahalan, 2006: Impact of 3-D clouds on clear-sky reflectance and aerosol retrieval in a biomass burning region of Brazil. IEEE Geosci. Remote Sens. Lett., 3 , 169172.

    • Search Google Scholar
    • Export Citation
  • Wen, G., , A. Marshak, , R. F. Cahalan, , L. A. Remer, , and R. G. Kleidman, 2007: 3-D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields. J. Geophys. Res., 112 .D13204, doi:10.1029/2006JD008267.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , and L. Parker, 1992: On the determination of cloud cover from satellite sensors: The effect of sensor spatial resolution. J. Geophys. Res., 97 , 1279912823.

    • Search Google Scholar
    • Export Citation
  • Xue, H., , and G. Feingold, 2006: Large-eddy simulations of trade wind cumuli: Investigation of aerosol indirect effects. J. Atmos. Sci., 63 , 16051622.

    • Search Google Scholar
    • Export Citation
  • Xue, H., , G. Feingold, , and B. Stevens, 2007: Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci., 65 , 392406.

    • Search Google Scholar
    • Export Citation
  • Zhao, G., , and L. D. Di Girolamo, 2006: Cloud fraction errors for trade wind cumuli from EOS-Terra instruments. Geophys. Res. Lett., 33 .L20802, doi:10.1029/2006GL027088.

    • Search Google Scholar
    • Export Citation
  • Zhao, G., , and L. D. Di Girolamo, 2007: Statistics on the macrophysical properties of trade wind cumuli over the tropical western Atlantic. J. Geophys. Res., 112 .D10204, doi:10.1029/2006JD007371.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., , and K. F. Evans, 1998: On the validity of the independent pixel approximation for boundary layer clouds observed during ASTEX. J. Geophys. Res., 103 , 60596074.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., , R. Davies, , and C. Moroney, 2003: On the angular radiance closure of tropical cumulus congestus clouds observed by the Multiangle Imaging Spectroradiometer. J. Geophys. Res., 108 .4626, doi:10.1029/2003JD003401.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 1
PDF Downloads 1 1 0

Shortwave Radiative Impacts from Aerosol Effects on Marine Shallow Cumuli

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
  • 2 Department of Atmospheric Sciences, School of Physics, Peking University, Beijing, China
  • 3 NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The net shortwave radiative impact of aerosol on simulations of two shallow marine cloud cases is investigated using a Monte Carlo radiative transfer model. For a shallow cumulus case, increased aerosol concentrations are associated not only with smaller droplet sizes but also reduced cloud fractions and cloud dimensions, a result of evaporation-induced mixing and a lack of precipitation. Three-dimensional radiative transfer (3DRT) effects alter the fluxes by 10%–20% from values calculated using the independent column approximation for these simulations. The first (Twomey) aerosol indirect effect is dominant but the decreased cloud fraction reduces the magnitude of the shortwave cloud forcing substantially. The 3DRT effects slightly decrease the sensitivity of the cloud albedo to changes in droplet size under an overhead sun for the two ranges of cloud liquid water paths examined, but not strongly so. A popular two-stream radiative transfer approximation to the cloud susceptibility overestimates the more directly calculated values for the low liquid-water-path clouds within pristine aerosol conditions by a factor of 2 despite performing well otherwise, suggesting caution in its application to the cloud albedos within broken cloud fields. An evaluation of the influence of cloud susceptibility and cloud fraction changes to a “domain” area-weighted cloud susceptibility found that the domain cloud albedo is more likely to increase under aerosol loading at intermediate aerosol concentrations than under the most pristine conditions, contrary to traditional expectations.

The second simulation (cumulus penetrating into stratus) is characterized by higher cloud fractions and more precipitation. This case has two regimes: a clean, precipitating regime where cloud fraction increases with increasing aerosol, and a more polluted regime where cloud fraction decreases with increasing aerosol. For this case the domain-mean cloud albedo increases steadily with aerosol loading under clean conditions, but increases only slightly after the cloud coverage decreases. Three-dimensional radiative transfer effects are mostly negligible for this case. Both sets of simulations suggest that aerosol-induced cloud fraction changes must be considered in tandem with the Twomey effect for clouds of small dimensions when assessing the net radiative impact, because both effects are drop size dependent and radiatively significant.

Corresponding author address: Paquita Zuidema, RSMAS/MPO, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098. Email: pzuidema@rsmas.miami.edu

Abstract

The net shortwave radiative impact of aerosol on simulations of two shallow marine cloud cases is investigated using a Monte Carlo radiative transfer model. For a shallow cumulus case, increased aerosol concentrations are associated not only with smaller droplet sizes but also reduced cloud fractions and cloud dimensions, a result of evaporation-induced mixing and a lack of precipitation. Three-dimensional radiative transfer (3DRT) effects alter the fluxes by 10%–20% from values calculated using the independent column approximation for these simulations. The first (Twomey) aerosol indirect effect is dominant but the decreased cloud fraction reduces the magnitude of the shortwave cloud forcing substantially. The 3DRT effects slightly decrease the sensitivity of the cloud albedo to changes in droplet size under an overhead sun for the two ranges of cloud liquid water paths examined, but not strongly so. A popular two-stream radiative transfer approximation to the cloud susceptibility overestimates the more directly calculated values for the low liquid-water-path clouds within pristine aerosol conditions by a factor of 2 despite performing well otherwise, suggesting caution in its application to the cloud albedos within broken cloud fields. An evaluation of the influence of cloud susceptibility and cloud fraction changes to a “domain” area-weighted cloud susceptibility found that the domain cloud albedo is more likely to increase under aerosol loading at intermediate aerosol concentrations than under the most pristine conditions, contrary to traditional expectations.

The second simulation (cumulus penetrating into stratus) is characterized by higher cloud fractions and more precipitation. This case has two regimes: a clean, precipitating regime where cloud fraction increases with increasing aerosol, and a more polluted regime where cloud fraction decreases with increasing aerosol. For this case the domain-mean cloud albedo increases steadily with aerosol loading under clean conditions, but increases only slightly after the cloud coverage decreases. Three-dimensional radiative transfer effects are mostly negligible for this case. Both sets of simulations suggest that aerosol-induced cloud fraction changes must be considered in tandem with the Twomey effect for clouds of small dimensions when assessing the net radiative impact, because both effects are drop size dependent and radiatively significant.

Corresponding author address: Paquita Zuidema, RSMAS/MPO, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098. Email: pzuidema@rsmas.miami.edu

Save