• Barthazy, E., , and R. Schefold, 2006: Fall velocity of snowflakes of different riming degree and crystal types. Atmos. Res., 82 , 391398.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., , C. Kummerow, , D. B. Shin, , and C. Williams, 2003: Constraining microwave brightness temperatures by radar brightband observations. J. Atmos. Oceanic Technol., 20 , 856871.

    • Search Google Scholar
    • Export Citation
  • Bellon, A., , I. Zawadzki, , and F. Fabry, 1997: Measurements of melting layer attenuation at X-band frequencies. Radio Sci., 32 , 943955.

    • Search Google Scholar
    • Export Citation
  • Bellon, A., , G. W. Lee, , and I. Zawadzki, 2005: Error statistics of VPR corrections in stratiform precipitation. J. Appl. Meteor., 44 , 9981015.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., , K. Ikeda, , G. Zhang, , M. Schönhuber, , and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46 , 634650.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , and R. A. Houze, 1995: Melting and freezing in a mesoscale convective system. Quart. J. Roy. Meteor. Soc., 121 , 5577.

  • Brown, P. R. A., , and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12 , 410414.

    • Search Google Scholar
    • Export Citation
  • Drummond, F. J., , R. R. Rogers, , S. A. Cohn, , W. L. Ecklund, , D. A. Carter, , and J. S. Wilson, 1996: A new look at the melting layer. J. Atmos. Sci., 53 , 759769.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., , and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52 , 838851.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., , and W. Szyrmer, 1999: Modeling of the melting layer. Part II: Electromagnetic. J. Atmos. Sci., 56 , 35933600.

  • Fillion, L., , and J-F. Mahfouf, 2003: Jacobians of an operational prognostic cloud scheme. Mon. Wea. Rev., 131 , 28382856.

  • Goeke, S., , and A. Waldvogel, 1998: Studies of snowflake aggregation efficiencies within the melting layer. Preprints. 10th Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 458–461.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , A. Bansemer, , P. R. Field, , S. L. Durden, , J. L. Stith, , J. E. Dye, , W. Hall, , and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59 , 34573491.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , A. Bansemer, , and C. H. Twohy, 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64 , 10471067.

    • Search Google Scholar
    • Export Citation
  • Huggel, A., , W. Schmid, , and A. Waldvogel, 1996: Raindrop size distributions and the radar bright band. J. Appl. Meteor., 35 , 16881702.

    • Search Google Scholar
    • Export Citation
  • Joss, J., , and A. Waldvogel, 1990: Precipitation measurement and hydrology. Radar in Meteorology, D. Atlas., Ed., Amer. Meteor. Soc., 577–606.

    • Search Google Scholar
    • Export Citation
  • Klaassen, W., 1988: Radar observations and simulation of the melting layer of precipitation. J. Atmos. Sci., 45 , 37413753.

  • Laroche, S., , and I. Zawadzki, 1994: A variational analysis method for the retrieval of the three-dimensional wind field from single-Doppler radar data. J. Atmos. Sci., 51 , 26642682.

    • Search Google Scholar
    • Export Citation
  • Laroche, S., , W. Szyrmer, , and I. Zawadzki, 2005: A microphysical bulk formulation based on scaling normalization of the particle size distribution. Part II: Data assimilation into physical processes. J. Atmos. Sci., 62 , 42224237.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., , and I. Zawadzki, 2005: Variability of drop size distributions: Timescale dependence of the variability and its effects on rain estimation. J. Appl. Meteor., 44 , 241255.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., , I. Zawadzki, , W. Szymer, , D. Sempere-Torres, , and R. Uijlenhoet, 2004: A general approach to double-moment normalization of drop size distributions. J. Appl. Meteor., 43 , 264281.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J., , and J. Toth, 1993: The Front Range blizzard of 1990. Part I: Synoptic and mesoscale structure. Mon. Wea. Rev., 121 , 402415.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62 , 16371644.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , R. Zhang, , and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29 , 153163.

    • Search Google Scholar
    • Export Citation
  • Mitra, S. K., , O. Vohl, , M. Ahr, , and H. R. Pruppacher, 1990: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. Part IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47 , 584591.

    • Search Google Scholar
    • Export Citation
  • Mosimann, L., 1995: An improved method for determining the degree of snow crystal riming by vertical Doppler radar. J. Atmos. Res., 37 , 305323.

    • Search Google Scholar
    • Export Citation
  • Mosimann, L., , E. Weingartner, , and A. Waldvogel, 1994: An analysis of accreted drop sizes and mass on rimed snow crystals. J. Atmos. Sci., 51 , 15481558.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., , P. Bauer, , N. F. Viltard, , D. E. Johnson, , W. Tao, , R. Meneghini, , and L. Liao, 2001a: A melting-layer model for passive/active microwave remote sensing applications. Part I: Model formulation and comparison with observations. J. Appl. Meteor., 40 , 11451163.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., , P. Bauer, , C. D. Kummerow, , Y. Hong, , and W-K. Tao, 2001b: A melting-layer model for passive/active microwave remote sensing applications. Part II: Simulation of TRMM observations. J. Appl. Meteor., 40 , 11641179.

    • Search Google Scholar
    • Export Citation
  • Oraltay, R. G., , and J. Hallett, 2005: The melting layer: A laboratory investigation of ice particle melt and evaporation near 0°C. J. Appl. Meteor., 44 , 206220.

    • Search Google Scholar
    • Export Citation
  • Papagheorghe, R., 1996: Modelisation de la couche de fonte. M.S. thesis, Dept. of Earth Sciences, University of Quebec at Montreal, 120 pp. [Available from C.P. 8888, Succ.”Centre Ville,” Montreal, PQ H3C 3P8, Canada.].

  • Protat, A., , Y. Lemaître, , and G. Scialom, 1998: Thermodynamic analytical fields from Doppler radar data by means of the MANDOP analysis. Quart. J. Roy. Meteor. Soc., 124 , 16331668.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., , and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44 , 27542763.

    • Search Google Scholar
    • Export Citation
  • Rico-Ramirez, M. A., , I. D. Cluckie, , and D. Han, 2005: Correction of the bright band using dual-polarization radar. Atmos. Sci. Lett., 6 , 4046.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , J. R. Campbell, , J. Zhu, , P. Kollias, , M. Shupe, , and C. Williams, 2005: Lidar and triple-wavelength Doppler radar measurements of the melting layer: A revised model for dark- and brightband phenomena. J. Appl. Meteor., 44 , 301312.

    • Search Google Scholar
    • Export Citation
  • Scialom, G., , and Y. Lemaître, 1990: A new analysis for the retrieval of the three-dimensional wind field from multiple Doppler radars. J. Atmos. Oceanic Technol., 7 , 640665.

    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., , and R. C. Srivastava, 1971: Doppler radar observations of drop-size distributions in a thunderstorm. J. Atmos. Sci., 28 , 983994.

    • Search Google Scholar
    • Export Citation
  • Sempere-Torres, D., , J. M. Porrà, , and J. D. Creutin, 1994: A general formulation for raindrop size distribution. J. Appl. Meteor., 33 , 14941502.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., , and I. Zawadzki, 1999: Modeling of the melting layer. Part I: Dynamics and microphysics. J. Atmos. Sci., 56 , 35733592.

  • Szyrmer, W., , S. Laroche, , and I. Zawadzki, 2005: A microphysical bulk formulation based on scaling normalization of the particle size distribution. Part I: Description. J. Atmos. Sci., 62 , 42064221.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31 , 10671078.

  • Waldvogel, A., , W. Henrich, , and L. Mosimann, 1993: New insight into the coupling between snow spectra and raindrop size distributions. Preprints. 26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 602–604.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., , R. C. Ball, , P. R. Field, , and A. J. Heymsfield, 2004: Universality in snowflake aggregation. Geophys. Res. Lett., 31 .L15104, doi:10.1029/2004GL020363.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, T., , and H. Tanaka, 1984: Microphysical processes of melting snowflakes detected by two-wavelength radar. Part I: Principle of measurement based on model calculation. J. Meteor. Soc. Japan, 62 , 650666.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., , W. Szyrmer, , and S. Laroche, 2000: Diagnostic of supercooled clouds from single-Doppler observations in regions of radar-detectable snow. J. Appl. Meteor., 39 , 10411058.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., , W. Szyrmer, , C. Bell, , and F. Fabry, 2005: Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62 , 37053723.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 1
PDF Downloads 2 2 0

Modeling of the Melting Layer. Part IV: Brightband Bulk Parameterization

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
  • 2 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, and Meteorological Research Branch, Meteorological Service of Canada, Dorval, Quebec, Canada
  • 3 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
© Get Permissions
Restricted access

Abstract

In this paper a simplified UHF-band backscattering parameterization for individual melting snowflakes is proposed. This parameterization is a function of the density, shape, and melted fraction, and is used here in a brightband bulk modeling study. A 1D bulk model is developed where aggregation and breakup are neglected. Model results are in good agreement with detailed bin-model results and simulate the radar brightband observations well. It is shown the model can be seen as an observation operator that could be introduced into a data assimilation scheme to extract information contained in the radar data measurements.

Corresponding author address: Catherine Heyraud, Dept. of Atmospheric and Oceanic Sciences, McGill University, Montreal QC H3A 2K6, Canada. Email: heyraud@zephyr.meteo.mcgill.ca

Abstract

In this paper a simplified UHF-band backscattering parameterization for individual melting snowflakes is proposed. This parameterization is a function of the density, shape, and melted fraction, and is used here in a brightband bulk modeling study. A 1D bulk model is developed where aggregation and breakup are neglected. Model results are in good agreement with detailed bin-model results and simulate the radar brightband observations well. It is shown the model can be seen as an observation operator that could be introduced into a data assimilation scheme to extract information contained in the radar data measurements.

Corresponding author address: Catherine Heyraud, Dept. of Atmospheric and Oceanic Sciences, McGill University, Montreal QC H3A 2K6, Canada. Email: heyraud@zephyr.meteo.mcgill.ca

Save