• Andrews, D. G., , and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: Asymptotic theory for equatorial waves in weak shear. J. Atmos. Sci., 33 , 20492053.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmospheric Dynamics. Academic Press, 489 pp.

  • Chang, C. P., 1976: Forcing of stratospheric Kelvin waves by tropospheric heat sources. J. Atmos. Sci., 33 , 742744.

  • Feldstein, S. B., 1994: A weakly nonlinear primitive equation baroclinic life cycle. J. Atmos. Sci., 51 , 2334.

  • Franzke, C., , S. Lee, , and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61 , 145160.

  • Garcia, R. R., , and M. L. Salby, 1987: Transient response to localized episodic heating in the tropics. Part II: Far-field behavior. J. Atmos. Sci., 44 , 499530.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Highwood, E. J., , and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124 , 15791604.

  • Holloway, C. E., , and J. D. Neelin, 2007: The convective cold top and quasi equilibrium. J. Atmos. Sci., 64 , 14671487.

  • Holton, J. R., 1992: Introduction to Dynamic Meteorology. Academic Press, 511 pp.

  • Holton, J. R., , P. H. Haynes, , M. E. Mclntyre, , A. R. Douglass, , R. B. Rood, , and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33 , 403439.

    • Search Google Scholar
    • Export Citation
  • James, P. M., , K. Fraedrich, , and I. N. James, 1994: Wave-zonal-flow interaction and ultra-low frequency variability in a simplified global circulation model. Quart. J. Roy. Meteor. Soc., 120 , 10451067.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., , and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52 , 307319.

  • Kiladis, G. N., , K. H. Straub, , G. C. Reid, , and K. S. Gage, 2001: Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere. Quart. J. Roy. Meteor. Soc., 127 , 19611983.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , K. H. Straub, , and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62 , 27902809.

    • Search Google Scholar
    • Export Citation
  • Kim, H-K., , and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. Part I: Axisymmetric flow. J. Atmos. Sci., 58 , 28452858.

    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., , and J. M. Wallace, 1971: On the interaction between Kelvin waves and the mean zonal flow. J. Atmos. Sci., 28 , 162169.

  • Kuang, Z., , and C. S. Bretherton, 2004: Convective influence of the heat balance of the tropical tropopause layer: A cloud-resolving model study. J. Atmos. Sci., 61 , 29192927.

    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1978: Waves in Fluids. Cambridge University Press, 504 pp.

  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., , and S. Gould-Stewart, 1981: A stratospheric fountain. J. Atmos. Sci., 38 , 27892796.

  • Nieto Ferreira, R., , and W. H. Schubert, 1997: Barotropic aspects of ITCZ breakdown. J. Atmos. Sci., 54 , 261285.

  • Nishi, N., , and A. Sumi, 1995: Eastward-moving disturbance near the tropopause along the equator during the TOGA COARE IOP. J. Meteor. Soc. Japan, 73 , 321337.

    • Search Google Scholar
    • Export Citation
  • Nishi, N., , J. Suzuki, , A. Hamada, , and M. Shiotani, 2007: Rapid transitions in zonal wind around the tropical tropopause and their relation to the amplified equatorial Kelvin waves. SOLA, 3 , 1316.

    • Search Google Scholar
    • Export Citation
  • Pandya, R., , D. Durran, , and C. Bretherton, 1993: Comments on “Thermally forced gravity waves in an atmosphere at rest”. J. Atmos. Sci., 50 , 40974101.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., , and J. Eluszkiewicz, 1999: The Brewer–Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci., 56 , 868890.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and F. Wu, 2005: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res., 110 .D03102, doi:10.1029/2004JD005006.

    • Search Google Scholar
    • Export Citation
  • Ratnam, M. V., , T. Tsuda, , T. Kozu, , and S. Mori, 2006: Long-term behavior of the Kelvin waves revealed by CHAMP/GPS RO measurements and their effects on the tropopause structure. Ann. Geophys., 24 , 13551366.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., , and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6 , 503538.

  • Salby, M. L., , and R. R. Garcia, 1987: Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44 , 458498.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., , and A. E. Dessler, 2001: A model for transport across the tropical tropopause. J. Atmos. Sci., 58 , 765779.

  • Sherwood, S. C., , T. Horinouchi, , and H. A. Zeleznik, 2003: Convective impact on temperature observed near the tropical tropopause. J. Atmos. Sci., 60 , 18471856.

    • Search Google Scholar
    • Export Citation
  • Son, S. W., , and S. Lee, 2005: The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci., 62 , 37413757.

    • Search Google Scholar
    • Export Citation
  • Son, S. W., , and S. Lee, 2007: Intraseasonal variability of the zonal mean tropical tropopause height. J. Atmos. Sci., 64 , 26952706.

  • Taguchi, M., 2003: Tropospheric response to stratospheric degradation in a simple global circulation model. J. Atmos. Sci., 60 , 18351846.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72 , 433448.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., , Y. Murayama, , H. Wiryosumarto, , S. W. B. Harijino, , and S. Kato, 1994: Radiosonde observations of equatorial atmospheric dynamics over Indonesia. 1. Equatorial waves and diurnal tides. J. Geophys. Res., 99 , 1049110505.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and V. E. Kousky, 1968: Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25 , 900907.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , G. N. Kiladis, , and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , and T. Maruyama, 1966: Stratospheric wave disturbances propagating over the equatorial Pacific. J. Meteor. Soc. Japan, 44 , 291294.

    • Search Google Scholar
    • Export Citation
  • Zhou, X. L., , and J. R. Holton, 2002: Intraseasonal variations of tropical cold-point tropopause temperature. J. Climate, 15 , 14601473.

    • Search Google Scholar
    • Export Citation
  • Zhou, X. L., , M. A. Geller, , and M. Zhang, 2001: Cooling trend of the tropical cold point tropopause temperatures and its implications. J. Geophys. Res., 106 , 15111522.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 11
PDF Downloads 25 25 9

Vertically Propagating Kelvin Waves and Tropical Tropopause Variability

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
  • 2 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
© Get Permissions
Restricted access

Abstract

The relationship between local convection, vertically propagating Kelvin waves, and tropical tropopause height variability is examined. This study utilizes both simulations of a global primitive-equation model and global observational datasets. Regression analysis with the data shows that convection over the western tropical Pacific is followed by warming in the upper troposphere (UT) and cooling in lower stratosphere (LS) over most longitudes, which results in a lifting of the tropical tropopause. The model results reveal that these UT–LS temperature anomalies are closely associated with vertically propagating Kelvin waves, indicating that these Kelvin waves drive tropical tropopause undulations at intraseasonal time scales.

The model simulations further show that regardless of the longitudinal position of the imposed heating, the UT–LS Kelvin wave reaches its maximum amplitude over the western Pacific. This result, together with an analysis based on wave action conservation, is used to contend that the Kelvin wave amplification over the western Pacific should be attributed to the zonal variation of background zonal wind field, rather than to the proximity of the heating. The wave action conservation law is also used to offer an explanation as to why the vertically propagating Kelvin waves play the central role in driving tropical tropopause height undulations.

The zonal and vertical modulation of the Kelvin waves by the background flow may help explain the origin of the very cold air over the western tropical Pacific, which is known to cause freeze-drying of tropospheric air en route to the stratosphere.

Corresponding author address: Sukyoung Lee, Department of Meteorology, The Pennsylvania State University, University Park, PA 16802. Email: sl@meteo.psu.edu

Abstract

The relationship between local convection, vertically propagating Kelvin waves, and tropical tropopause height variability is examined. This study utilizes both simulations of a global primitive-equation model and global observational datasets. Regression analysis with the data shows that convection over the western tropical Pacific is followed by warming in the upper troposphere (UT) and cooling in lower stratosphere (LS) over most longitudes, which results in a lifting of the tropical tropopause. The model results reveal that these UT–LS temperature anomalies are closely associated with vertically propagating Kelvin waves, indicating that these Kelvin waves drive tropical tropopause undulations at intraseasonal time scales.

The model simulations further show that regardless of the longitudinal position of the imposed heating, the UT–LS Kelvin wave reaches its maximum amplitude over the western Pacific. This result, together with an analysis based on wave action conservation, is used to contend that the Kelvin wave amplification over the western Pacific should be attributed to the zonal variation of background zonal wind field, rather than to the proximity of the heating. The wave action conservation law is also used to offer an explanation as to why the vertically propagating Kelvin waves play the central role in driving tropical tropopause height undulations.

The zonal and vertical modulation of the Kelvin waves by the background flow may help explain the origin of the very cold air over the western tropical Pacific, which is known to cause freeze-drying of tropospheric air en route to the stratosphere.

Corresponding author address: Sukyoung Lee, Department of Meteorology, The Pennsylvania State University, University Park, PA 16802. Email: sl@meteo.psu.edu

Save