• Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Andreae, M. O., , D. Rosenfeld, , P. Artaxo, , A. A. Costa, , G. P. Frank, , K. M. Longlo, , and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303 , 13371342.

    • Search Google Scholar
    • Export Citation
  • Borys, R. D., , D. H. Lowenthal, , and D. L. Mitchell, 2000: The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds. Atmos. Environ., 34 , 25932602.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1989: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Wea. Rev., 117 , 10061015.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55 , 22842293.

  • Braham, R. R., 1952: The water and energy budgets of the thunderstorm and their relationship to thunderstorm development. J. Atmos. Sci., 9 , 227242.

    • Search Google Scholar
    • Export Citation
  • Cheng, C-T., , W-C. Wang, , and J-P. Chen, 2007: A modeling study of aerosol impacts on cloud microphysics and radiative properties. Quart. J. Roy. Meteor. Soc., 133 , 283297.

    • Search Google Scholar
    • Export Citation
  • Cofer, W. R., , E. L. Winstead, , B. J. Stocks, , L. W. Overbay, , J. D. Goldammer, , D. R. Cahoon, , and J. S. Levine, 1996: Emissions from boreal forest fires: Are the atmospheric chemical impacts underestimated? Biomass Burning and Global Change, Vol. 2, J. S. Levine, Ed., MIT Press, 834–839.

    • Search Google Scholar
    • Export Citation
  • Dennis, A. S., , and D. J. Musil, 1973: Calculation of hailstone growth and trajectories in a simple cloud model. J. Atmos. Sci., 30 , 278288.

    • Search Google Scholar
    • Export Citation
  • Eagan, R. C., , P. V. Hobbs, , and L. F. Radke, 1974: Measurements of cloud condensation nuclei and cloud droplet size distributions in the vicinity of forest fires. J. Appl. Meteor., 13 , 553557.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Feingold, G., , H. Jiang, , and J. Y. Harrington, 2005: On smoke suppression of clouds in Amazonia. Geophys. Res. Lett., 32 .L02804, doi:10.1029/2004GL021369.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., , and R. A. Houze, 1989: One-dimensional time-dependent modeling of GATE cumulonimbus convection. J. Atmos. Sci., 46 , 330352.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., , J. Simpson, , and W-K. Tao, 1996: Factors responsible for precipitation efficiencies in midlatitude and tropical squall simulations. Mon. Wea. Rev., 124 , 21002125.

    • Search Google Scholar
    • Export Citation
  • Forster, C., and Coauthors, 2001: Transport of boreal forest fire emissions from Canada to Europe. J. Geophys. Res., 106 , 2288722906.

    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., , and R. Servranckx, 2003: Transport of forest fire smoke above the tropopause by supercell convection. Geophys. Res. Lett., 30 .1542, doi:10.1029/2002GL016820.

    • Search Google Scholar
    • Export Citation
  • Givati, A., , and D. Rosenfeld, 2004: Quantifying precipitation suppression due to air pollution. J. Appl. Meteor., 43 , 10381056.

  • Hallett, J., , and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249 , 2628.

  • Heymsfield, G. M., , and S. Schotz, 1985: Structure and evolution of a severe squall line over Oklahoma. Mon. Wea. Rev., 113 , 15631589.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., , T. J. Matejka, , P. H. Herzegh, , J. D. Locatelli, , and R. A. Houze, 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cycles. I: A case study of a cold front. J. Atmos. Sci., 37 , 568596.

    • Search Google Scholar
    • Export Citation
  • Jirak, I. L., , and W. R. Cotton, 2006: Effect of air pollution on precipitation along the front range of the Rocky Mountains. J. Appl. Meteor. Climatol., 45 , 236245.

    • Search Google Scholar
    • Export Citation
  • Jost, H-J., , K. Drdla, , A. Stohl, , L. Pfister, , M. Loewenstein, , and J. P. Lopez, 2004: In-situ observations of mid-latitude forest fire plumes deep in the stratosphere. Geophys. Res. Lett., 31 .L11101, doi:10.1029/2003GL019253.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., 2006: Aerosol effects on microphysics and precipitation: Classification of numerical results. Proc. AGU 2006 Fall Meeting, San Francisco, CA, Amer. Geophys. Union.

  • Khain, A. P., , and I. Sednev, 1996: Simulation of precipitation formation in the eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43 , 77110.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , and A. Pokrovsky, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part II: Sensitivity study. J. Atmos. Sci., 61 , 29833001.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , M. Ovtchinnikov, , M. Pinsky, , A. Pokrovsky, , and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55 , 159224.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , M. B. Pinsky, , M. Shapiro, , and A. Pokrovsky, 2001a: Collision rate of small graupel and water drops. J. Atmos. Sci., 58 , 25712595.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , D. Rosenfeld, , and A. Pokrovsky, 2001b: Simulating convective clouds with sustained supercooled liquid water down to −37.5°C using a spectral microphysics model. Geophys. Res. Lett., 28 , 38873890.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , D. Rosenfeld, , and A. Pokrovsky, 2003: Simulation of aerosol effects on convective clouds developed under continental and maritime conditions. Geophysical Research Abstracts, Vol. 5, Abstract 03180.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , A. Pokrovsky, , M. Pinsky, , A. Seifert, , and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description. J. Atmos. Sci., 61 , 29632982.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , D. Rosenfeld, , and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131 , 26392663.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , N. Cohen, , Y. Segal, , B. Lynn, , and D. Rosenfeld, 2007: Effects of aerosols on lightning and structure of tropical cyclones. Proc. IUGG XXIV, Perugia, Italy, International Association of Meteorology and Atmospheric Sciences, 986.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48 , 11601189.

    • Search Google Scholar
    • Export Citation
  • Koren, I., , Y. J. Kaufman, , D. Rosenfeld, , L. A. Remer, , and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32 .L14828, doi:10.1029/2005GL023187.

    • Search Google Scholar
    • Export Citation
  • Kovetz, A., , and B. Olund, 1969: The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent. J. Atmos. Sci., 26 , 10601065.

    • Search Google Scholar
    • Export Citation
  • Kuba, N., , and Y. Fujiyoshi, 2006: Development of a cloud microphysical model and parameterizations to describe the effect of CCN on warm cloud. Atmos. Chem. Phys., 6 , 27932810.

    • Search Google Scholar
    • Export Citation
  • Lee, S., , L. Donner, , and V. Phillips, 2008: Impact of aerosols on precipitation in deep convection. Quart. J. Roy. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Li, X., , C-H. Sui, , and K-N. Lau, 2002: Precipitation efficiency in the tropical deep convective regime: A 2-D cloud resolving modeling study. J. Meteor. Soc. Japan, 80 , 205212.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., , Y. Kogan, , and D. K. Lilly, 1995: Reducing the numerical dispersion of the cloud droplet spectrum in condensation calculations. Preprints, Conf. on Cloud Physics, Dallas, TX, Amer. Meteor. Soc., 112–117.

  • Lynn, B. H., , A. Khain, , J. Dudhia, , D. Rosenfeld, , A. Pokrovsky, , and A. Seifert, 2005a: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part I: Model description and first results. Mon. Wea. Rev., 133 , 4458.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., , A. Khain, , J. Dudhia, , D. Rosenfeld, , A. Pokrovsky, , and A. Seifert, 2005b: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part II: Simulation of a CaPE rain event with squall line. Mon. Wea. Rev., 133 , 5971.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., , A. Khain, , D. Rosenfeld, , and W. Woodley, 2007: Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res., 112 .D10225, doi:10.1029/2006JD007537.

    • Search Google Scholar
    • Export Citation
  • Magaritz, L., , M. Pinsky, , and A. Khain, 2007: Drizzle formation in stratocumulus clouds. Proc. IUGG XXIV, Perugia, Italy, International Association of Meteorology and Atmospheric Sciences, 872.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1972: Precipitation efficiency of thunderstorms on the high plains. J. Rech. Atmos., 6 , 367370.

  • Meyers, M. P., , P. J. DeMott, , and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Ohashi, Y., , and H. Kida, 2002: Local circulations developed in the vicinity of both coastal and inland urban areas: A numerical study with a mesoscale atmospheric model. J. Appl. Meteor., 41 , 3045.

    • Search Google Scholar
    • Export Citation
  • Phillips, V., , A. Pokrovsky, , and A. Khain, 2007: The influence of time-dependent melting on the dynamics and precipitation production in maritime and continental storm clouds. J. Atmos. Sci., 64 , 338359.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., , and A. P. Khain, 1998: Some effects of cloud turbulence on water–ice and ice–ice collisions. Atmos. Res., 47–48 , 6986.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., , and A. P. Khain, 2002: Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Quart. J. Roy. Meteor. Soc., 128 , 501533.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., , A. P. Khain, , and M. Shapiro, 1999: Collisions of small drops in a turbulent flow. Part I: Collision efficiency. Problem formulation and preliminary results. J. Atmos. Sci., 56 , 25852600.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., , A. P. Khain, , and M. Shapiro, 2000: Stochastic effects of cloud droplet hydrodynamic interaction in a turbulent flow. Atmos. Res., 53 , 131169.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., , A. P. Khain, , and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58 , 742764.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., 1995: A new look at homogeneous ice nucleation in supercooled water drops. J. Atmos. Sci., 52 , 19241933.

  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Oxford University Press, 963 pp.

  • Ramanathan, V., , P. J. Crutzen, , J. T. Kiehl, , and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294 , 21192124.

    • Search Google Scholar
    • Export Citation
  • Rissler, J., , E. Swietlicki, , J. Zhou, , G. Roberts, , M. O. Andreae, , L. V. Gatti, , and P. Artaxo, 2004: Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition—Comparison of modeled and measured CCN concentrations. Atmos. Chem. Phys., 4 , 21192143.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26 , 20. 31053108.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287 , 17931796.

  • Rosenfeld, D., , and I. M. Lensky, 1998: Spaceborne sensed insights into precipitation formation processes in continental and maritime clouds. Bull. Amer. Meteor. Soc., 79 , 24572476.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , and W. L. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature, 405 , 440442.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , A. Khain, , B. Lynn, , and W. L. Woodley, 2007: Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmos. Chem. Phys. Discuss., 7 , 34113424.

    • Search Google Scholar
    • Export Citation
  • Segal, Y., , and A. Khain, 2006: Dependence of droplet concentration on aerosol conditions in different cloud types: Application to droplet concentration parameterization of aerosol conditions. J. Geophys. Res., 111 .D15204, doi:10.1029/2005JD006561.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., , and S. J. Burian, 2003: Detection of urban-induced rainfall anomalies in a major coastal city. Earth Interactions, 7 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., , V. Phillips, , and J. S. Wettlaufer, 2006: Small ice crystals and the climatology of lightning. Geophys. Res. Lett., 33 .L05804, doi:10.1029/2005GL025242.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., , D. J. Musil, , A. G. Detwiler, , and R. Ramachandran, 1999: Observations of mixed-phase precipitation within a CaPE thunderstorm. J. Appl. Meteor., 38 , 145155.

    • Search Google Scholar
    • Export Citation
  • Sui, C-S., , X. Li, , and M-J. Yang, 2007: On the definition of precipitation efficiency. J. Atmos. Sci., 64 , 45064513.

  • Takahashi, T., , T. Endoh, , G. Wakahama, , and N. Fukuta, 1991: Vapor diffusional growth of free-falling snow crystals between −3 and −23°C. J. Meteor. Soc. Japan, 69 , 1530.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., , X. Li, , A. Khain, , T. Matsui, , S. Lang, , and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112 .D24S18, doi:10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Teller, A., , and Z. Levin, 2006: The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model. Atmos. Chem. Phys., 6 , 6780.

    • Search Google Scholar
    • Export Citation
  • Tzivion, S., , G. Feingold, , and Z. Levin, 1989: The evolution of raindrop spectra. Part II: Collisional collection/breakup and evaporation in a rainshaft. J. Atmos. Sci., 46 , 33123327.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1975: Remarks on the mechanism of atmospheric ice nucleation. Proc. Eighth Int. Conf. on Nucleation, Leningrad, U.S.S.R., Gidrometeoizdat, 265–269.

  • Vali, G., 1994: Freezing rate due to heterogeneous nucleation. J. Atmos. Sci., 51 , 18431856.

  • Van den Heever, S. C., , G. G. Carrió, , W. R. Cotton, , P. J. DeMott, , and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63 , 17521775.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2005: A modelling study of the response of tropical deep convection to the increase of cloud condensational nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res., 110 .D21211, doi:10.1029/2004JD005720.

    • Search Google Scholar
    • Export Citation
  • Warner, C., , J. Simpson, , G. V. Helvoirt, , D. W. Martin, , D. Suchman, , and G. L. Austin, 1980: Deep convection on day 261 of GATE. Mon. Wea. Rev., 108 , 169194.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107 .8082, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Wotawa, G., , and M. Trainer, 2000: The influence of Canadian forest fires on pollutant concentrations in the United States. Science, 288 , 324328.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., , G. M. McFarquhar, , S. M. Saleeby, , and W. R. Cotton, 2007: Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett., 34 .L14812, doi:10.1029/2007GL029876.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 137 137 60
PDF Downloads 134 134 85

Factors Determining the Impact of Aerosols on Surface Precipitation from Clouds: An Attempt at Classification

View More View Less
  • 1 Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
© Get Permissions
Restricted access

Abstract

The simulation of the dynamics and the microphysics of clouds observed during the Large-Scale Biosphere–Atmosphere Experiment in Amazonia—Smoke, Aerosols, Clouds, Rainfall, and Climate (LBA–SMOCC) campaign, as well as extremely continental and extremely maritime clouds, is performed using an updated version of the Hebrew University spectral microphysics cloud model (HUCM). A new scheme of diffusional growth allows the reproduction of in situ–measured droplet size distributions including those formed in extremely polluted air. It was shown that pyroclouds forming over the forest fires can precipitate. Several mechanisms leading to formation of precipitation from pyroclouds are considered.

The mechanisms by which aerosols affect the microphysics and precipitation of warm cloud-base clouds have been investigated by analyzing the mass, heat, and moisture budgets. The increase in aerosol concentration increases both the generation and the loss of the condensate mass. In the clouds developing in dry air, the increase in the loss is dominant, which suggests a decrease in the accumulated precipitation with the aerosol concentration increase. On the contrary, an increase in aerosol concentration in deep maritime clouds leads to an increase in precipitation. The precipitation efficiency of clouds in polluted air is found to be several times lower than that of clouds forming in clean air. A classification of the results of aerosol effects on precipitation from clouds of different types developing in the atmosphere with high freezing level (about 4 km) is proposed. The role of air humidity and other factors in precipitation’s response to aerosols is discussed. The analysis shows that many discrepancies between the results reported in different observational and numerical studies can be attributed to the different atmospheric conditions and cloud types analyzed.

Corresponding author address: Prof. Alexander Khain, Department of Atmospheric Sciences, The Institute of Earth Science, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel. Email: khain@vms.huji.ac.il

Abstract

The simulation of the dynamics and the microphysics of clouds observed during the Large-Scale Biosphere–Atmosphere Experiment in Amazonia—Smoke, Aerosols, Clouds, Rainfall, and Climate (LBA–SMOCC) campaign, as well as extremely continental and extremely maritime clouds, is performed using an updated version of the Hebrew University spectral microphysics cloud model (HUCM). A new scheme of diffusional growth allows the reproduction of in situ–measured droplet size distributions including those formed in extremely polluted air. It was shown that pyroclouds forming over the forest fires can precipitate. Several mechanisms leading to formation of precipitation from pyroclouds are considered.

The mechanisms by which aerosols affect the microphysics and precipitation of warm cloud-base clouds have been investigated by analyzing the mass, heat, and moisture budgets. The increase in aerosol concentration increases both the generation and the loss of the condensate mass. In the clouds developing in dry air, the increase in the loss is dominant, which suggests a decrease in the accumulated precipitation with the aerosol concentration increase. On the contrary, an increase in aerosol concentration in deep maritime clouds leads to an increase in precipitation. The precipitation efficiency of clouds in polluted air is found to be several times lower than that of clouds forming in clean air. A classification of the results of aerosol effects on precipitation from clouds of different types developing in the atmosphere with high freezing level (about 4 km) is proposed. The role of air humidity and other factors in precipitation’s response to aerosols is discussed. The analysis shows that many discrepancies between the results reported in different observational and numerical studies can be attributed to the different atmospheric conditions and cloud types analyzed.

Corresponding author address: Prof. Alexander Khain, Department of Atmospheric Sciences, The Institute of Earth Science, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel. Email: khain@vms.huji.ac.il

Save