• Benedict, J. J., , S. Lee, , and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61 , 121144.

  • Charney, J. G., , and J. G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36 , 12051216.

  • Cohen, J., , and M. Barlow, 2005: The NAO, the AO, and global warming: How closely related? J. Climate, 18 , 44984513.

  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 127 , 901924.

  • Franzke, C., , S. Lee, , and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61 , 145160.

  • Hart, J. E., 1979: Barotropic quasi-geostrophic flow over anisotropic mountains. J. Atmos. Sci., 36 , 17361746.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1996: Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett., 23 , 665668.

    • Search Google Scholar
    • Export Citation
  • Lee, S., , and S. B. Feldstein, 1996: Two types of wave breaking in an aquaplanet GCM. J. Atmos. Sci., 53 , 842857.

  • Legras, B., , and M. Ghil, 1985: Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci., 42 , 433471.

    • Search Google Scholar
    • Export Citation
  • Luo, D., , A. Lupo, , and H. Wan, 2007a: Dynamics of eddy-driven low-frequency dipole modes. Part I: A simple model of North Atlantic Oscillations. J. Atmos. Sci., 64 , 338.

    • Search Google Scholar
    • Export Citation
  • Luo, D., , T. Gong, , and A. Lupo, 2007b: Dynamics of eddy-driven low-frequency dipole modes. Part II: Free mode characteristics of NAO and diagnostic study. J. Atmos. Sci., 64 , 2951.

    • Search Google Scholar
    • Export Citation
  • Luo, D., , T. Gong, , and Y. Diao, 2007c: Dynamics of eddy-driven low-frequency dipole modes. Part III: Meridional displacement of westerly jet anomalies during two phases of NAO. J. Atmos. Sci., 64 , 32323248.

    • Search Google Scholar
    • Export Citation
  • Luo, D., , T. Gong, , and Y. Diao, 2008: Dynamics of eddy-driven low-frequency dipole modes. Part IV: Planetary and synoptic wave-breaking processes during the NAO life cycle. J. Atmos. Sci., 65 , 737765.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2005: A new look at the Pacific storm track variability: Sensitivity to tropical SSTs and to upstream seeding. J. Atmos. Sci., 62 , 13671390.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., , and M. Wang, 2005: The Arctic climate paradox: The recent decrease of the Arctic Oscillation. Geophys. Res. Lett., 32 .L06701, doi:10.1029/2004GL021752.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., , and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 63 , 241266.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., , D. P. Rowell, , and C. K. Folland, 1999: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398 , 320323.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., , R. L. Miller, , G. Schmidt, , and L. Pandolfo, 1999: Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature, 399 , 452455.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and B. J. Hoskins, 1980: Barotropic influences on the growth and decay of nonlinear baroclinic waves. J. Atmos. Sci., 37 , 16791684.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , J. M. Wallace, , and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13 , 10181036.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , B. J. Hoskins, , and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119 , 1755.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., , E. P. Gerber, , P. J. Kushner, , and B. A. Cash, 2004: A mechanism and simple dynamical model of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 61 , 264280.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 2000: North Atlantic Oscillation/annular mode: Two paradigms–one phenomenon. Quart. J. Roy. Meteor. Soc., 126 , 791805.

    • Search Google Scholar
    • Export Citation
  • Wittman, M. A. H., , A. J. Charlton, , and L. M. Polvani, 2005: On the meridional structure of annular modes. J. Climate, 18 , 21192122.

  • Woollings, T. J., , B. J. Hoskins, , M. Blackburn, , and P. Berrisford, 2008: A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65 , 609626.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 6
PDF Downloads 4 4 1

Dynamical Relationship between the Phase of North Atlantic Oscillations and the Meridional Excursion of a Preexisting Jet: An Analytical Study

View More View Less
  • 1 Physical Oceanography Laboratory, College of Physical and Environmental Oceanography, Ocean University of China, Qingdao, China
  • 2 LACS, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

In this paper, it is shown from an analytical solution that in the presence of a preexisting jet the interaction between the zonal jet and the topography of the land–sea contrast (LSC) in the Northern Hemisphere (NH) tends to induce a dipole component that depends crucially upon whether this zonal jet exhibits a north–south excursion. This phenomenon cannot be observed if the zonal jet has no north–south shift. When the preexisting jet is located more northward (southward), the induced dipole can have a low-over-high (high-over-low) structure and thus can make the center of the stationary wave anomaly shift southward (northward), which can be regarded as an initial state or embryo of a positive (negative) phase North Atlantic Oscillation (NAO). This dipole component can be amplified into a typical NAO event under the forcing of synoptic-scale eddies. To some extent, this result provides an explanation for why the positive (negative) phase of the NAO can be controlled by the northward (southward) shift of the zonal jet prior to the NAO.

In addition, the impact of the jet shift on the occurrence of NAO is examined in a weakly nonlinear NAO model if the initial state of an NAO is prespecified. It is found that the northward (southward) shift of a zonal jet favors the occurrence of the subsequent positive (negative) phase NAO event and then results in a northward (southward)-intensified jet relative to the preexisting jet. In addition, during the decaying of the positive phase NAO, a strong blocking activity is easily observed over Europe as the jet is moved to the north.

Corresponding author address: Dr. Dehai Luo, College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266003, China. Email: ldh@ouc.edu.cn

Abstract

In this paper, it is shown from an analytical solution that in the presence of a preexisting jet the interaction between the zonal jet and the topography of the land–sea contrast (LSC) in the Northern Hemisphere (NH) tends to induce a dipole component that depends crucially upon whether this zonal jet exhibits a north–south excursion. This phenomenon cannot be observed if the zonal jet has no north–south shift. When the preexisting jet is located more northward (southward), the induced dipole can have a low-over-high (high-over-low) structure and thus can make the center of the stationary wave anomaly shift southward (northward), which can be regarded as an initial state or embryo of a positive (negative) phase North Atlantic Oscillation (NAO). This dipole component can be amplified into a typical NAO event under the forcing of synoptic-scale eddies. To some extent, this result provides an explanation for why the positive (negative) phase of the NAO can be controlled by the northward (southward) shift of the zonal jet prior to the NAO.

In addition, the impact of the jet shift on the occurrence of NAO is examined in a weakly nonlinear NAO model if the initial state of an NAO is prespecified. It is found that the northward (southward) shift of a zonal jet favors the occurrence of the subsequent positive (negative) phase NAO event and then results in a northward (southward)-intensified jet relative to the preexisting jet. In addition, during the decaying of the positive phase NAO, a strong blocking activity is easily observed over Europe as the jet is moved to the north.

Corresponding author address: Dr. Dehai Luo, College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266003, China. Email: ldh@ouc.edu.cn

Save