Stratified Turbulence: A Possible Interpretation of Some Geophysical Turbulence Measurements

James J. Riley University of Washington, Seattle, Washington

Search for other papers by James J. Riley in
Current site
Google Scholar
PubMed
Close
and
Erik Lindborg Linné Flow Centre, KTH Mechanics, Stockholm, Sweden

Search for other papers by Erik Lindborg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Several existing sets of smaller-scale ocean and atmospheric data appear to display Kolmogorov–Obukov–Corrsin inertial ranges in horizontal spectra for length scales up to at least a few hundred meters. It is argued here that these data are inconsistent with the assumptions for these inertial range theories. Instead, it is hypothesized that the dynamics of stratified turbulence explain these data. If valid, these dynamics may also explain the behavior of strongly stratified flows in similar dynamic ranges of other geophysical flows.

Corresponding author address: James Riley, Box 352600, University of Washington, Seattle, WA 98195. Email: rileyj@u.washington.edu

This article included in the Spontaneous Imbalance special collection.

Abstract

Several existing sets of smaller-scale ocean and atmospheric data appear to display Kolmogorov–Obukov–Corrsin inertial ranges in horizontal spectra for length scales up to at least a few hundred meters. It is argued here that these data are inconsistent with the assumptions for these inertial range theories. Instead, it is hypothesized that the dynamics of stratified turbulence explain these data. If valid, these dynamics may also explain the behavior of strongly stratified flows in similar dynamic ranges of other geophysical flows.

Corresponding author address: James Riley, Box 352600, University of Washington, Seattle, WA 98195. Email: rileyj@u.washington.edu

This article included in the Spontaneous Imbalance special collection.

Save
  • Billant, P., and J-M. Chomaz, 2000a: Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid. J. Fluid Mech., 418 , 167188.

    • Search Google Scholar
    • Export Citation
  • Billant, P., and J-M. Chomaz, 2000b: Three-dimensional stability of a vertical columnar vortex pair in a stratified fluid. J. Fluid Mech., 419 , 6591.

    • Search Google Scholar
    • Export Citation
  • Billant, P., and J-M. Chomaz, 2001: Self-similarity of strongly stratified inviscid flows. Phys. Fluids, 13 , 16451651.

  • Corrsin, S., 1951: On the spectrum of isotropic temperature fluctuations in isotropic turbulence. J. Appl. Phys., 22 , 469.

  • Ewart, T. E., 1976: Observations from straightline isobaric runs of SPURV. Proc. IAPSO/IAMAP PSII, Edinburgh, United Kingdom, Joint Oceanographic Assembly, 1–18.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Y. Meillier, and M. L. Jensen, 2008: Measurements of boundary layer profiles with in situ sensors and Doppler lidar. J. Atmos. Oceanic Technol., in press.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., P. J. Hendricks, T. B. Sanford, T. R. Osborn, and A. J. Williams, 1981: A composite spectrum of vertical shear in the upper ocean. J. Phys. Oceanogr., 11 , 12581271.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid. Mech., 11 , 339369.

  • Holbrook, W. S., and I. Fer, 2005: Ocean internal wave spectra inferred from seismic reflection transects. Geophys. Res. Lett., 32 .L15604, doi:10.1029/2005GL023733.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and J. N. Moum, 2007a: Oceanic isopycnal slope spectra. Part I: Internal waves. J. Phys. Oceanogr., 37 , 12151231.

  • Klymak, J. M., and J. N. Moum, 2007b: Oceanic isopyncnal slope spectra. Part II: Turbulence. J. Phys. Oceanogr., 37 , 12321245.

  • Lesieur, M., 1997: Turbulence in Fluids. 3rd ed. Kluwer Academic, 515 pp.

  • Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40 , 749761.

  • Lindborg, E., 2005: The effect of rotation on the mesoscale energy cascade in the free atmosphere. Geophys. Res. Lett., 32 .L01809, doi:10.1029/2004GL021319.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550 , 207242.

  • Lindborg, E., and J. J. Riley, 2007: A condition on the average Richardson number for weak non-linearity of internal gravity waves. Tellus, 59A , 781784.

    • Search Google Scholar
    • Export Citation
  • Müller, P., G. Holloway, F. Henyey, and N. Pomprey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24 , 493536.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42 , 950960.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1949: Structure of the temperature field in turbulent flows. Izv. Akad. Nauk SSSR, Ser. Geofiz., 13 , 5869.

  • Onsager, L., 1949: Statistical hydrodynamics. Nuovo Cimento, 6 (Suppl.) , 279287.

  • Praud, O., A. M. Fincham, and J. Sommeria, 2005: Decaying grid turbulence in a strongly stratified fluid. J. Fluid Mech., 522 , 133.

  • Riley, J. J., and S. M. deBruynKops, 2003: Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids, 15 , 20472059.

  • Spedding, G. R., 1997: The evolution of initially turbulent bluff-body wakes at high internal Froude number. J. Fluid Mech., 337 , 283301.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1935: Statistical theory of turbulence. Proc. Roy. Soc. London, 151A , 421478.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1344 575 199
PDF Downloads 619 173 14