A Bulk Parameterization of Giant CCN

David B. Mechem Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma, and Department of Geography, University of Kansas, Lawrence, Kansas

Search for other papers by David B. Mechem in
Current site
Google Scholar
PubMed
Close
and
Yefim L. Kogan Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yefim L. Kogan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A parameterization for giant cloud condensation nuclei (GCCN), suitable for use in bulk microphysical models, has been developed that uses precise representations of the condensational growth of aerosol particles in the subcloud layer. The formulation employs an observationally based GCCN distribution function and directly observable parameters of GCCN, such as concentration and the shape of the aerosol spectra. The parameterization couples naturally to parameterizations of sea salt flux from the ocean surface. The behavior of the GCCN parameterization in a large eddy simulation (LES) framework is consistent with simulations employing explicit, size-resolving microphysical methods. The parameterization properly represents the sensitivity of cloud, drizzle, turbulence, and radiative properties to changes in GCCN concentration for polluted and clean background CCN environments.

Corresponding author address: David B. Mechem, Department of Geography, University of Kansas, 1475 Jayhawk Blvd., 213 Lindley Hall, Lawrence, KS 66045-7613. Email: dmechem@ku.edu

Abstract

A parameterization for giant cloud condensation nuclei (GCCN), suitable for use in bulk microphysical models, has been developed that uses precise representations of the condensational growth of aerosol particles in the subcloud layer. The formulation employs an observationally based GCCN distribution function and directly observable parameters of GCCN, such as concentration and the shape of the aerosol spectra. The parameterization couples naturally to parameterizations of sea salt flux from the ocean surface. The behavior of the GCCN parameterization in a large eddy simulation (LES) framework is consistent with simulations employing explicit, size-resolving microphysical methods. The parameterization properly represents the sensitivity of cloud, drizzle, turbulence, and radiative properties to changes in GCCN concentration for polluted and clean background CCN environments.

Corresponding author address: David B. Mechem, Department of Geography, University of Kansas, 1475 Jayhawk Blvd., 213 Lindley Hall, Lawrence, KS 66045-7613. Email: dmechem@ku.edu

Save
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 1227–1230.

  • Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Schubert, and A. S. Frisch, 1995: The Atlantic statocumulus experiment—ASTEX. Bull. Amer. Meteor. Soc., 76 , 889–904.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and H. T. Ochs III, 1993: Warm-rain initiation: An overview of microphysical mechanisms. J. Appl. Meteor., 32 , 608–625.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., S. G. Lasher-Trapp, W. A. Cooper, C. A. Knight, and J. Latham, 2003: The role of giant and ultragiant nuclei in the formation of early radar echoes in warm cumulus clouds. J. Atmos. Sci., 60 , 2557–2572.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34 .L03813, doi:10.1029/2006GL027648.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., R. T. Bruintjes, and G. K. Mather, 1997: Calculations pertaining to hygroscopic seeding with flares. J. Appl. Meteor., 36 , 1449–1469.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., H. Zhang, and P. J. Jonker, 1995: Microphysical and turbulent structure of nocturnal stratocumulus as observed during ASTEX. J. Atmos. Sci., 52 , 2763–2777.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999: The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56 , 4100–4117.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., G. Guzman, and H. Abdul-Razzak, 1998: Competition between sea salt and sulfate particles as cloud condensation nuclei. J. Atmos. Sci., 55 , 3340–3347.

    • Search Google Scholar
    • Export Citation
  • Ivanova, E. T., Y. L. Kogan, I. P. Mazin, and M. S. Permyakov, 1977: Method of parameterizing the condensation process of droplet growth in numerical models. Izv. Akad. Sci. USSR Atmos. Ocean Phys., 13 , 821–826.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39 , 448–460.

  • Junge, C. E., 1972: Our knowledge of the physico-chemistry of aerosols in the undisturbed marine environment. J. Geophys. Res., 77 , 5183–5200.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Y. L. Kogan, 1999: A large eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer. J. Atmos. Sci., 56 , 2115–2131.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Y. L. Kogan, 2000: A new cloud physics parameterization for large-eddy simulation models of marine stratocumulus. Mon. Wea. Rev., 128 , 229–243.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48 , 1160–1188.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61 , 2923–2940.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. H. Daum, and R. McGraw, 2004: An analytical expression for predicting the critical radius in the autoconversion parameterization. Geophys. Res. Lett., 31 .L06121, doi:10.1029/2003GL019117.

    • Search Google Scholar
    • Export Citation
  • Mordy, W., 1959: Computations of the growth by condensation of a population of cloud drops. Tellus, 11 , 16–44.

  • O’Dowd, C. D., M. H. Smith, I. E. Consterdine, and J. A. Lowe, 1997: Marine aerosol, sea-salt, and the marine sulphur cycle: A short review. Atmos. Environ., 31 , 73–80.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and D. H. Lenschow, 1991: Stratiform cloud formation in the marine boundary layer. J. Atmos. Sci., 48 , 2141–2158.

  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado state regional atmospheric modeling system (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43 , 182–195.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55 , 3616–3638.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1980: A numerical investigation of several factors contributing to the observed variable intensity of deep convection over South Florida. J. Appl. Meteor., 19 , 1037–1063.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. J. Atmos. Sci., 62 , 3034–3050.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 309 162 7
PDF Downloads 161 59 3