• Andren, A., A. Brown, J. Graf, P. Mason, C. Moeng, F. Nieuwstadt, and U. Schumann, 1994: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of 4 computer codes. Quart. J. Roy. Meteor. Soc., 120 , 14571484.

    • Search Google Scholar
    • Export Citation
  • Berkooz, G., P. Holmes, and J. Lumley, 1993: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech., 25 , 539575.

    • Search Google Scholar
    • Export Citation
  • Carlotti, P., 2002: Two-point properties in atmospheric turbulence very close to the ground: Comparison of a high resolution LES with theoretical models. Bound.-Layer Meteor., 104 , 381410.

    • Search Google Scholar
    • Export Citation
  • Carlotti, P., and P. Drobinski, 2004: Length scales in wall-bounded high-Reynolds-number turbulence. J. Fluid Mech., 516 , 239264.

  • Cuxart, J., P. Bougeault, and J-L. Redelsperger, 2000: A multiscale turbulence scheme apt for LES and mesoscale modelling. Quart. J. Roy. Meteor. Soc., 126 , 130.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29 , 91115.

  • Drobinski, P., and R. Foster, 2003: On the origin of near-surface streaks in the neutrally-stratified planetary boundary layer. Bound.-Layer Meteor., 108 , 247256.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., R. Brown, P. Flamant, and J. Pelon, 1998: Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar. Bound.-Layer Meteor., 88 , 343361.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., P. Carlotti, R. Newson, R. Banta, R. Foster, and J-L. Redelsperger, 2004: The structure of the near-neutral atmospheric surface layer. J. Atmos. Sci., 61 , 699714.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., J-L. Redelsperger, and C. Pietras, 2006: Evaluation of a planetary boundary layer subgrid-scale model that accounts for near-surface turbulence anisotropy. Geophys. Res. Lett., 33 .L23806, doi:10.1029/2006GL027062.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., P. Carlotti, J-L. Redelsperger, R. Banta, V. Masson, and R. Newsom, 2007: Numerical and experimental investigation of the neutral atmospheric surface layer. J. Atmos. Sci., 64 , 137156.

    • Search Google Scholar
    • Export Citation
  • Esau, I., 2003: The Coriolis effect on coherent structures in planetary boundary layers. J. Turbul., 4 , 17.

  • Etling, D., and R. Brown, 1993: Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteor., 65 , 215248.

  • Finnigan, J. J., and R. H. Shaw, 2000: A wind-tunnel study of airflow in waving wheat: An EOF analysis of the structure of the large-eddy motion. Bound.-Layer Meteor., 96 , 211255.

    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 1997: Structure and energetics of optimal Ekman layer perturbations. J. Fluid Mech., 333 , 97123.

  • Foster, R. C., and R. A. Brown, 1994: On large-scale PBL modelling: Surface wind and latent heat flux comparisons. Global Atmos. Ocean Syst., 2 , 199219.

    • Search Google Scholar
    • Export Citation
  • Foster, R. C., F. Vianey, P. Drobinski, and P. Carlotti, 2006: Near-surface coherent structures and the vertical momentum flux in a large-eddy simulation of the neutrally-stratified boundary layer. Bound.-Layer Meteor., 120 , 229255.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., 1986: Observations of boundary layer structure made during the 1981 KONTUR experiment. Quart. J. Roy. Meteor. Soc., 112 , 825841.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., 1992: The structure of turbulence in the near-neutral atmospheric boundary layer. J. Atmos. Sci., 49 , 226239.

  • Hess, G. D., 2004: The neutral, barotropic planetary boundary layer, capped by a low-level inversion. Bound.-Layer Meteor., 110 , 319355.

    • Search Google Scholar
    • Export Citation
  • Holmes, P., J. Lumley, and G. Berkooz, 1996: Turbulence, Coherent Structures, Dynamical Systems, and Symmetry. Cambridge University Press, 420 pp.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A., and F. Nieuwstadt, 1986: Scaling the atmospheric boundary layer. Bound.-Layer Meteor., 36 , 201209.

  • Hourdin, F., F. Couvreux, and L. Menut, 2002: Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J. Atmos. Sci., 59 , 11051123.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., and J. Morrison, 2000: Eddy structure in turbulent boundary layers. Eur. J. Mech., 19B , 673694.

  • Hunt, J. C. R., and P. Carlotti, 2001: Statistical structure at the wall of the high Reynolds number turbulent boundary layer. Flow Turbul. Combust., 66 , 453475.

    • Search Google Scholar
    • Export Citation
  • Jalickee, J., and C. Ropelewski, 1979: An objective analysis of the boundary-layer thermodynamic structure during GATE. Part I: Method. Mon. Wea. Rev., 107 , 6876.

    • Search Google Scholar
    • Export Citation
  • Jeong, J., and F. Hussain, 1995: On the identification of a vortex. J. Fluid Mech., 285 , 6994.

  • Katul, G., and C-R. Chu, 1998: A theoretical and experimental investigation of energy-containing scales in the dynamic sublayer of boundary-layer flows. Bound.-Layer Meteor., 86 , 279312.

    • Search Google Scholar
    • Export Citation
  • Lafore, J., and Coauthors, 1998: The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16 , 90109.

    • Search Google Scholar
    • Export Citation
  • Lilly, D., 1966: On the instability of Ekman boundary flow. J. Atmos. Sci., 23 , 481494.

  • Lin, C-L., J. McWilliams, C-H. Moeng, and P. Sullivan, 1996: Coherent structures and dynamics in a neutrally-stratified planetary boundary layer flow. Phys. Fluids, 8 , 26262639.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51 , 9991022.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and C. Readings, 1979: Aircraft observations of the structure of the lower boundary layer over the sea. Quart. J. Roy. Meteor. Soc., 105 , 785802.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., 1974: The atmospheric boundary layer below 150 meters. Annu. Rev. Fluid Mech., 6 , 147177.

  • Preisendorfer, R., 1988: Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425 pp.

  • Redelsperger, J-L., F. Mahé, and P. Carlotti, 2001: A simple and general subgrid model suitable both for surface layer and free-stream turbulence. Bound.-Layer Meteor., 101 , 375408.

    • Search Google Scholar
    • Export Citation
  • Rinker, D. K., and G. Young, 1996: Use of obliquely rotated principal component analysis to identify coherent structures. Bound.-Layer Meteor., 80 , 1947.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. K., 1996: Empirical orthogonal function analysis of the weakly convective atmospheric boundary layer. Part I: Eddy structures. J. Atmos. Sci., 53 , 801823.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. K., and J. C. Wyngaard, 1996: Empirical orthogonal function analysis of the weakly convective atmospheric boundary layer. Part II: Eddy energetics. J. Atmos. Sci., 53 , 824841.

    • Search Google Scholar
    • Export Citation
  • Young, G., D. Kristovich, M. Hjelmfelt, and R. Foster, 2002: Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Amer. Meteor. Soc., 83 , 9971001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 0 0 0
PDF Downloads 0 0 0

Turbulence Anisotropy Carried by Streaks in the Neutral Atmospheric Surface Layer

View More View Less
  • 1 Institut Pierre Simon Laplace, Laboratoire de Météorologie Dynamique, Palaiseau, France
  • | 2 Institut Pierre Simon Laplace, Service d’Aéronomie, Paris, France
  • | 3 Ministère de l’Équipement, Marseille, France
Restricted access

Abstract

The authors investigate the relationships between coherent structures and turbulence anisotropy in the neutral planetary boundary layer by means of empirical orthogonal function (EOF) analysis of large-eddy simulation (LES) data. The simulated flow contains near-surface transient streaks. The EOF analysis extracts the most energetic patterns from the velocity fluctuations based on their second-order spatial correlations. The scale and direction of streaks obtained from a level-by-level analysis of the LES flow field do correspond to that of the EOFs.

It is found that two characteristics of the turbulence anisotropy depend on whether or not the velocity fluctuations with a given horizontal wave vector present distinct patterns: (i) the vertical extent up to which the turbulent kinetic energy (TKE) is concentrated and (ii) the ratio of the vertical TKE EV to the horizontal TKE EH. Although still present in the complete signal, this anisotropy is strongly emphasized when the signal is projected onto the EOF structures. Hence the coherent structures do indeed carry more anisotropy than the remaining turbulent fluctuations. Furthermore, at horizontal wave vectors where energetic patterns are dominant, the ratio EV/EH takes values close to 0.2, representative of the ratio EV/EH based on the total LES flow and on in situ measurements.

Corresponding author address: Dr. Thomas Dubos, Institut Pierre Simon Laplace, Laboratoire de Météorologie Dynamique, École Polytechnique, 91128 Palaiseau CEDEX, France. Email: dubos@lmd.polytechnique.fr

Abstract

The authors investigate the relationships between coherent structures and turbulence anisotropy in the neutral planetary boundary layer by means of empirical orthogonal function (EOF) analysis of large-eddy simulation (LES) data. The simulated flow contains near-surface transient streaks. The EOF analysis extracts the most energetic patterns from the velocity fluctuations based on their second-order spatial correlations. The scale and direction of streaks obtained from a level-by-level analysis of the LES flow field do correspond to that of the EOFs.

It is found that two characteristics of the turbulence anisotropy depend on whether or not the velocity fluctuations with a given horizontal wave vector present distinct patterns: (i) the vertical extent up to which the turbulent kinetic energy (TKE) is concentrated and (ii) the ratio of the vertical TKE EV to the horizontal TKE EH. Although still present in the complete signal, this anisotropy is strongly emphasized when the signal is projected onto the EOF structures. Hence the coherent structures do indeed carry more anisotropy than the remaining turbulent fluctuations. Furthermore, at horizontal wave vectors where energetic patterns are dominant, the ratio EV/EH takes values close to 0.2, representative of the ratio EV/EH based on the total LES flow and on in situ measurements.

Corresponding author address: Dr. Thomas Dubos, Institut Pierre Simon Laplace, Laboratoire de Météorologie Dynamique, École Polytechnique, 91128 Palaiseau CEDEX, France. Email: dubos@lmd.polytechnique.fr

Save