• Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33 , 193206.

  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108 , 10461053.

  • Bott, A., 1989: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Wea. Rev., 117 , 10061015.

    • Search Google Scholar
    • Export Citation
  • Chaumerliac, N., E. Richard, and J. Pinty, 1987: Sulfur scavenging in a mesoscale model with quasi-spectral microphysics: two-dimensional results for continental and maritime clouds. J. Geophys. Res., 92 , 31143126.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., and R. Farley, 1984: Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: A possible mechanism for gustiness. J. Atmos. Sci., 41 , 329350.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61 , 588606.

    • Search Google Scholar
    • Export Citation
  • Cozic, J., B. Verheggen, S. Mertes, P. Connolly, K. Bower, A. Petzold, U. Baltensperger, and E. Weingartner, 2007: Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch. Atmos. Chem. Phys., 7 , 17971807.

    • Search Google Scholar
    • Export Citation
  • Cozic, J., and Coauthors, 2008: Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmos. Chem. Phys., 8 , 407423.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., D. Murphy, P. Hudson, and D. Thomson, 2004: Single-particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE. J. Geophys. Res., 109 .D04201, doi:10.1029/2003JD004032.

    • Search Google Scholar
    • Export Citation
  • Davies, H., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc., 102 , 405418.

  • Denman, K. L., and Coauthors, 2007: Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Soloman et al., Eds., Cambridge University Press, 499–588.

    • Search Google Scholar
    • Export Citation
  • Doms, G., and U. Schättler, 2002: A description of the nonhydrostatic regional model LM. Part I: Dynamics and numerics. Deutscher Wetterdienst Tech. Rep., 134 pp.

  • Durran, D., and J. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111 , 23412361.

  • Ferek, R. J., D. A. Hegg, P. V. Hobbs, P. Durkee, and K. Nielsen, 1998: Measurements of ship-induced tracks in clouds off the Washington coast. J. Geophys. Res., 103 , D18. 2319923206.

    • Search Google Scholar
    • Export Citation
  • Fuhrer, O., and C. Schär, 2005: Embedded cellular convection in moist flow past topography. J. Atmos. Sci., 62 , 28102828.

  • Ghan, S., C. C. Chuang, and J. E. Penner, 1993: A parameterization of cloud droplet nucleation. Part I: Single aerosol type. Atmos. Res., 30 , 197221.

    • Search Google Scholar
    • Export Citation
  • Givati, A., and D. Rosenfeld, 2004: Quantifying precipitation suppression due to air pollution. J. Appl. Meteor., 43 , 10381056.

  • Givati, A., and D. Rosenfeld, 2005: Separation between cloud-seeding and air pollution effects. J. Appl. Meteor., 44 , 12981314.

  • Herzog, H-J., G. Vogel, and U. Schubert, 2002: LLM—A nonhydrostatic model applied to high-resolving simulations of turbulent fluxes over heterogeneous terrain. Theor. Appl. Climatol., 73 , 6786.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P., R. Easter, and A. Fraser, 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain: Part II. Microphysics. J. Atmos. Sci., 30 , 813823.

    • Search Google Scholar
    • Export Citation
  • Houze, R., and S. Medina, 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62 , 35993623.

  • Hueglin, C., R. Gehrig, U. Baltensperger, M. Gysel, C. Monn, and H. Vonmont, 2005: Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites at Switzerland. Atmos. Environ., 39 , 637651.

    • Search Google Scholar
    • Export Citation
  • Jaenicke, R., 1993: Tropospheric aerosols. Aerosol–Cloud–Climate Interactions, P. V. Hobbs, Ed., Academic Press, 1–31.

  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A , 301316.

  • Jiang, Q., 2006: Precipitation over concave terrain. J. Atmos. Sci., 63 , 22692288.

  • Jiang, Q., 2007: Precipitation over multiscale terrain. Tellus, 59A , 321335.

  • Jiang, Q., and R. Smith, 2003: Cloud timescales and orographic precipitation. J. Atmos. Sci., 60 , 15431559.

  • Jirak, I. L., and W. R. Cotton, 2006: Effect of air pollution on precipitation along the front range of the Rocky Mountains. J. Appl. Meteor., 45 , 236245.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128 , 229243.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. R. Durran, 2004: Factors governing cellular convection in orographic precipitation. J. Atmos. Sci., 61 , 682698.

    • Search Google Scholar
    • Export Citation
  • Leaitch, W., C. Banic, G. Isaac, M. Couture, P. Liu, I. Gultepe, and S-M. Li, 1996: Physical and chemical observations in marine stratus during the 1993 North Atlantic Regional Experiment: Factors controlling cloud droplet number concentrations. J. Geophys. Res., 101 , D22. 2912329135.

    • Search Google Scholar
    • Export Citation
  • Lin, H., and R. Leaitch, 1997: Development of an in-cloud aerosol activation parameterization for climate modelling. Proc. Workshop on Measurements of Cloud Properties for Forecasts of Weather and Climate, Mexico City, Mexico, WMO, 328–335.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2002: Possible aerosol effects on ice clouds via contact nucleation. J. Atmos. Sci., 59 , 647656.

  • Lohmann, U., and B. Kärcher, 2002: First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model. J. Geophys. Res., 107 .4105, doi:10.1029/ 2001JD000767.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 4 , 75617614.

  • Lohmann, U., P. Stier, C. Hoose, S. Ferrachat, S. Kloster, E. Roeckner, and J. Zhang, 2007: Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos. Chem. Phys., 7 , 34253446.

    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., and R. Rotunno, 2005: Simulations of moist nearly neutral flow over a ridge. J. Atmos. Sci., 62 , 14101427.

  • Murphy, D. M., and Coauthors, 2006: Single-particle mass spectrometry of tropospheric aerosol particles. J. Geophys. Res., 111 .D23S32, doi:10.1029/2006JD007340.

    • Search Google Scholar
    • Export Citation
  • Peng, Y., U. Lohmann, R. Leaitch, C. Banic, and M. Couture, 2002: The cloud albedo–cloud droplet effective radius relationship for clean and polluted clouds from RACE and FIRE.ACE. J. Geophys. Res., 107 .4106, doi:10.1029/2000JD000281.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effect of pressure on spectrum evolution. J. Atmos. Sci., 58 , 742764.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H., and J. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33 , 645671.

  • Rosenfeld, D., and A. Givati, 2006: Evidence of orographic precipitation suppression by air pollution–induced aerosols in the western united states. J. Appl. Meteor., 45 , 893911.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., J. Dai, X. Yu, Z. Yao, X. Xu, X. Yang, and C. Du, 2007: Inverse relations between amounts of air pollution and orographic precipitation. Science, 315 , 396398.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and R. A. Houze, 2007: Lessons on orographic precipitation from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133 , 811830.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part I: Model description. Meteor. Atmos. Phys., 92 , 4566.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J., and S. Pandis, 1998: Atmospheric Chemistry and Physics. John Wiley, 1326 pp.

  • Smith, R., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

  • Smith, R., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32 , 348364.

  • Smith, R., 1989a: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, 1–41.

  • Smith, R., 1989b: Mechanisms of orographic precipitation. Meteor. Mag., 119 , 8588.

  • Smith, R., 2003: A linear upslope time-delay model for orographic precipitation. J. Hydrol., 282 , 29.

  • Smith, R., and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61 , 13771391.

  • Smolarkiewicz, P., R. Rasmussen, and T. Clark, 1988: On the dynamics of hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45 , 18721905.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., and Coauthors, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Spichtinger, P., 2004: Eisübersättigte Regionen. Ph.D. thesis, Deutsches Zentrum für Luft- und Raumfahrt, 208 pp.

  • Steppeler, J., G. Doms, U. Schättler, H. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82 , 7596.

    • Search Google Scholar
    • Export Citation
  • Stier, P., and Coauthors, 2005: The aerosol–climate model ECHAM5-HAM. Atmos. Chem. Phys., 5 , 11251156.

  • Twomey, S., M. Piepgrass, and T. Wolfe, 1984: An assessment of the impact of pollution on global cloud albedo. Tellus, 36B , 356366.

  • Vehameki, H., M. Kulmala, I. Napari, K. Lehtinen, C. Timmreck, M. Noppel, and A. Laaksonen, 2002: An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions. J. Geophys. Res., 107 .4622, doi:10.1029/2002JD002184.

    • Search Google Scholar
    • Export Citation
  • Verheggen, B., and Coauthors, 2007: Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds. J. Geophys. Res., D23202, doi:10.1029/2007JD008714.

    • Search Google Scholar
    • Export Citation
  • Vignati, E., J. Wilson, and P. Stier, 2004: M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. J. Geophys. Res., 109 .D22202, doi:10.1029/2003JD004485.

    • Search Google Scholar
    • Export Citation
  • Weingartner, E., S. Nyeki, and U. Baltensperger, 1999: Seasonal and diurnal variation of aerosol size distributions (10 < d < 750 nm) at a high-alpine site (Jungfraujoch 3580 m asl). J. Geophys. Res., 104 , D21. 2680926820.

    • Search Google Scholar
    • Export Citation
  • Weingartner, E., M. Gysel, and U. Baltensperger, 2002: Hygroscopicity of aerosol particles at low temperatures. 1. New low-temperature h-tdma instrument: Setup and first applications. Environ. Sci. Technol., 36 , 5562.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 12
PDF Downloads 9 9 9

Sensitivity Studies of the Role of Aerosols in Warm-Phase Orographic Precipitation in Different Dynamical Flow Regimes

View More View Less
  • 1 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Restricted access

Abstract

Aerosols serve as a source of cloud condensation nuclei (CCN) and influence the microphysical properties of clouds. In the case of orographic clouds, it is suspected that aerosol–cloud interactions reduce the amount of precipitation on the upslope side of the mountain and enhance the precipitation on the downslope side when the number of aerosols is increased. The net effect may lead to a shift of the precipitation distribution toward the leeward side of mountain ranges, which affects the hydrological cycle on the local scale.

In this study aerosol–cloud interactions in warm-phase clouds and the possible impact on the orographic precipitation distribution are investigated. Herein, simulations of moist orographic flow over topography are conducted and the influence of anthropogenic aerosols on the orographic precipitation formation is analyzed. The degree of aerosol pollution is prescribed by different aerosol spectra that are representative for central Switzerland. The simulations are performed with the Consortium for Small-Scale Modeling’s mesoscale nonhydrostatic limited-area weather prediction model (COSMO) with a horizontal grid spacing of 2 km and a fully coupled aerosol–cloud parameterization.

It is found that an increase in the aerosol load leads to a downstream shift of the orographic precipitation distribution and to an increase in the spillover factor. A reduction of warm-phase orographic precipitation is observed at the upslope side of the mountain. The downslope precipitation enhancement depends critically on the width of the mountain and on the flow dynamics. In the case of orographic precipitation induced by stably stratified unblocked flow, the loss in upslope precipitation is not compensated by leeward precipitation enhancement. In contrast, flow blocking may lead to leeward precipitation enhancement and eventually to a compensation of the upslope precipitation loss. The simulations also indicate that latent heat effects induced by aerosol–cloud–precipitation interactions may considerably affect the orographic flow dynamics and consequently feed back on the orographic precipitation development.

Corresponding author address: Andreas Muhlbauer, Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetsstr. 16, 8092 Zurich, Switzerland. Email: andreas.muehlbauer@env.ethz.ch

Abstract

Aerosols serve as a source of cloud condensation nuclei (CCN) and influence the microphysical properties of clouds. In the case of orographic clouds, it is suspected that aerosol–cloud interactions reduce the amount of precipitation on the upslope side of the mountain and enhance the precipitation on the downslope side when the number of aerosols is increased. The net effect may lead to a shift of the precipitation distribution toward the leeward side of mountain ranges, which affects the hydrological cycle on the local scale.

In this study aerosol–cloud interactions in warm-phase clouds and the possible impact on the orographic precipitation distribution are investigated. Herein, simulations of moist orographic flow over topography are conducted and the influence of anthropogenic aerosols on the orographic precipitation formation is analyzed. The degree of aerosol pollution is prescribed by different aerosol spectra that are representative for central Switzerland. The simulations are performed with the Consortium for Small-Scale Modeling’s mesoscale nonhydrostatic limited-area weather prediction model (COSMO) with a horizontal grid spacing of 2 km and a fully coupled aerosol–cloud parameterization.

It is found that an increase in the aerosol load leads to a downstream shift of the orographic precipitation distribution and to an increase in the spillover factor. A reduction of warm-phase orographic precipitation is observed at the upslope side of the mountain. The downslope precipitation enhancement depends critically on the width of the mountain and on the flow dynamics. In the case of orographic precipitation induced by stably stratified unblocked flow, the loss in upslope precipitation is not compensated by leeward precipitation enhancement. In contrast, flow blocking may lead to leeward precipitation enhancement and eventually to a compensation of the upslope precipitation loss. The simulations also indicate that latent heat effects induced by aerosol–cloud–precipitation interactions may considerably affect the orographic flow dynamics and consequently feed back on the orographic precipitation development.

Corresponding author address: Andreas Muhlbauer, Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetsstr. 16, 8092 Zurich, Switzerland. Email: andreas.muehlbauer@env.ethz.ch

Save