• Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56 , 20452069.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys., 1 , 119143.

    • Search Google Scholar
    • Export Citation
  • Aris, R., 1962: Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Prentice-Hall, 286 pp.

  • Braham Jr., R. R., and P. Squires, 1974: Cloud physics—1974. Bull. Amer. Meteor. Soc., 55 , 543586.

  • Das, P., 1983: Vorticity concentration in the subcloud layers of a rotating cloud. National Science Foundation Final Rep. ATM-8023825, 78 pp.

  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41 , 29913006.

  • Davies-Jones, R. P., 1985: Dynamical interaction between an isolated convective cell and a veering environmental wind. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN, Amer. Meteor. Soc., 216–219.

  • Davies-Jones, R. P., 1986: Tornado dynamics. Thunderstorm Morphology and Dynamics, 2nd ed., E. Kessler, Ed., University of Oklahoma Press, 197–236.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1998: Tornadoes and tornadic storms. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 185.

  • Davies-Jones, R. P., 2000a: A Lagrangian model for baroclinic genesis of mesoscale vortices. Part I: Theory. J. Atmos. Sci., 57 , 715736.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2000b: Can the hook echo instigate tornadogenesis barotropically? Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 269–272.

  • Davies-Jones, R. P., 2001: Computation of a solenoid as a ratio of areas and a geometric interpretation of the Arakawa Jacobian. Mon. Wea. Rev., 129 , 345353.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2002: Linear and nonlinear propagation of supercell storms. J. Atmos. Sci., 59 , 31783205.

  • Davies-Jones, R. P., 2006: Global properties of a simple axisymmetric simulation of tornadogenesis. Preprints, 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., P10.2. [Available online at http://ams.confex.com/ams/pdfpapers/115323.pdf.].

  • Davies-Jones, R. P., and H. E. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., and Y. P. Richardson, 2002: An exact anelastic Beltrami-flow solution for use in model validation. Preprints, 19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 43–46.

  • Davies-Jones, R. P., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 28, Amer. Meteor. Soc., 167–221.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23 , 179196.

  • Eskridge, R. E., and P. Das, 1976: Effect of a precipitation-driven downdraft on a rotating wind field: A possible trigger mechanism for tornadoes? J. Atmos. Sci., 33 , 7084.

    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., 1993: Numerical simulations of axisymmetric tornadogenesis in forced convection. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 41–48.

    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., 1994: The thermodynamic speed limit and its violation in axisymmetric numerical simulations of tornado-like vortices. Atmos.–Ocean, 32 , 335359.

    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., 1995: On modeling tornadoes in isolation from the parent storm. Atmos.–Ocean, 33 , 501512.

  • Fiedler, B. H., and R. Rotunno, 1986: A theory for the maximum windspeeds in tornado-like vortices. J. Atmos. Sci., 43 , 23282340.

  • Forbes, G. S., 1981: On the reliability of hook echoes as tornado indicators. Mon. Wea. Rev., 109 , 14571466.

  • Forbes, G. S., and H. B. Bluestein, 2001: Tornadoes, tornadic thunderstorms, and photogrammetry: A review of the contributions of T. T. Fujita. Bull. Amer. Meteor. Soc., 82 , 7396.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1973: ; Proposed mechanism of tornado formation from rotating thunderstorm. Preprints, Eighth Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 191–196.

  • Fujita, T. T., 1975: ; New evidence from April 3–4, 1974 tornadoes. Preprints, Ninth Conf. on Severe Local Storms, Norman, OK, Amer. Meteor. Soc., 248–255.

  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132 , 18971916.

    • Search Google Scholar
    • Export Citation
  • Glickman, T. S., 2000: Glossary of Meteorology. 2nd. ed. Amer. Meteor. Soc., 855 pp.

  • Haltiner, G. J., 1971: Numerical Weather Prediction. Wiley, 317 pp.

  • Howells, P. A. C., R. Rotunno, and R. K. Smith, 1988: A comparative study of atmospheric and laboratory-analogue numerical tornado-vortex models. Quart. J. Roy. Meteor. Soc., 114 , 801822.

    • Search Google Scholar
    • Export Citation
  • Kessler III, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 10, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., D. W. Burgess, and R. A. Brown, 1975: Tornado production and storm sustenance. Preprints, Ninth Conf. on Severe Local Storms, Norman, OK, Amer. Meteor. Soc., 100–104.

  • Leslie, L. M., and R. K. Smith, 1978: The effect of vertical stability on tornadogenesis. J. Atmos. Sci., 35 , 12811288.

  • Lewellen, D. C., and W. S. Lewellen, 2007a: Near-surface intensification of tornado vortices. J. Atmos. Sci., 64 , 21762194.

  • Lewellen, D. C., and W. S. Lewellen, 2007b: Near-surface vortex intensification through corner flow collapse. J. Atmos. Sci., 64 , 21952209.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., W. S. Lewellen, and J. Xia, 2000: The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci., 57 , 527544.

    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., 1976: Theoretical models of the tornado vortex. Proc. Symp. on Tornadoes: Assessment of Knowledge and Implications for Man, Lubbock, TX, Texas Tech University, 107–143.

  • Lewellen, W. S., 1993: Tornado vortex theory. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 19–39.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1982: The development and maintenance of rotation in convective storms. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 149–160.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1983: Dynamics of rotating thunderstorms. Mesoscale Meteorology: Theories, Observations, and Models, D. K. Lilly and T. Gal-Chen, Eds., Reidel, 531–543.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. A., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130 , 852876.

  • Markowski, P. A., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130 , 16921721.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. A., J. M. Straka, and E. N. Rasmussen, 2003: Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations. J. Atmos. Sci., 60 , 795823.

    • Search Google Scholar
    • Export Citation
  • Moffatt, H. K., and A. Tsinober, 1992: Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech., 24 , 281312.

  • Moncrieff, M. W., 1978: The dynamical structure of two-dimensional steady convection in constant vertical shear. Quart. J. Roy. Meteor. Soc., 104 , 543567.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and B. F. Farrell, 1999: The structure and dynamics of tornado-like vortices. J. Atmos. Sci., 56 , 29082936.

  • Orszag, S. A., 1971: Numerical simulation of incompressible flows within simple boundaries: Accuracy. J. Fluid Mech., 49 , 75112.

  • Petterssen, S., 1956: Weather Analysis and Forecasting. Vol. I. Motion and Motion Systems. 2nd ed. McGraw-Hill, 428 pp.

  • Proctor, F. H., 1979: The dynamic and thermal structure of an evolving tornado. Preprints, 11th Conf. on Severe Local Storms, Kansas City, MO, Amer. Meteor. Soc., 389–396.

  • Proctor, F. H., 1988: Numerical simulations of an isolated microburst. Part I: Dynamics and structure. J. Atmos. Sci., 45 , 31373160.

  • Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75 , 9951006.

    • Search Google Scholar
    • Export Citation
  • Richtmyer, R. D., 1957: Difference Methods for Initial Value Problems. Interscience, 238 pp.

  • Rotunno, R., 1977: Numerical simulation of a laboratory vortex. J. Atmos. Sci., 34 , 19421956.

  • Rotunno, R., 1979: A study in tornado-like vortex dynamics. J. Atmos. Sci., 36 , 140155.

  • Rotunno, R., 1986: Tornadoes and tornadogenesis. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 414–436.

  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42 , 271292.

    • Search Google Scholar
    • Export Citation
  • Seitter, K. L., and H-L. Kuo, 1983: The dynamical structure of squall-line type thunderstorms. J. Atmos. Sci., 40 , 28312854.

  • Shapiro, A., 1993: The use of an exact solution of the Navier–Stokes equations in a validation test of a three-dimensional nonhydrostatic numerical model. Mon. Wea. Rev., 121 , 24202425.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and L. M. Leslie, 1978: Tornadogenesis. Quart. J. Roy. Meteor. Soc., 104 , 189199.

  • Smith, R. K., and L. M. Leslie, 1979: A numerical study of tornadogenesis in a rotating thunderstorm. Quart. J. Roy. Meteor. Soc., 105 , 107127.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and E. N. Rasmussen, 1997: Toward improving microphysical parameterizations of conversion processes. J. Appl. Meteor., 36 , 896902.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and B. H. Fiedler, 1995: Tornado-like vortexgenesis in a simplified numerical model. J. Atmos. Sci., 52 , 37573778.

  • Trapp, R. J., and R. Davies-Jones, 1997: Tornadogenesis with and without a dynamic pipe effect. J. Atmos. Sci., 54 , 113133.

  • Walko, R. L., 1988: Plausibility of substantial dry adiabatic subsidence in a tornado core. J. Atmos. Sci., 45 , 22512267.

  • Yih, C-S., 1969: Stratified flows. Annu. Rev. Fluid Mech., 1 , 73110.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 5 5 5

Can a Descending Rain Curtain in a Supercell Instigate Tornadogenesis Barotropically?

View More View Less
  • 1 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

This paper investigates whether the descending rain curtain associated with the hook echo of a supercell can instigate a tornado through a purely barotropic mechanism. A simple numerical model of a mesocyclone is constructed in order to rule out other tornadogenesis mechanisms in the simulations. The flow is axisymmetric and Boussinesq with constant eddy viscosity in a neutrally stratified environment. The domain is closed to avoid artificial decoupling of a vortex from the storm-scale circulation. In the principal simulation, the initial condition is a balanced, slowly decaying, Beltrami flow describing an updraft that is rotating cyclonically at midlevels around a low pressure center surrounded by a concentric downdraft that revolves cyclonically but has anticyclonic vorticity. The boundary conditions are no slip on the tangential wind and free slip on the radial or vertical wind to accommodate this initial condition and to allow strong interaction of a vortex with the ground.

Precipitation is released through the top above the updraft and falls to the ground near the updraft–downdraft interface in an annular curtain. The downdraft enhancement induced by the precipitation drag upsets the balance of the Beltrami flow. The downdraft and its outflow toward the axis increase low-level convergence beneath the updraft and transport air with moderately high angular momentum downward and inward where it is entrained and stretched by the updraft. The resulting tornado has a corner region with an intense axial jet and low pressure capped by a vortex breakdown and a transition to a broader vortex aloft (a tornado cyclone). A clear slot of subsiding air with anticyclonic vorticity surrounds the vortex. The vertical kinetic energy of the entire circulation declines dramatically prior to tornado formation.

Corresponding author address: Dr. Robert Davies-Jones, NOAA/National Severe Storms Laboratory, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072-7323. Email: bob.davies-jones@noaa.gov

Abstract

This paper investigates whether the descending rain curtain associated with the hook echo of a supercell can instigate a tornado through a purely barotropic mechanism. A simple numerical model of a mesocyclone is constructed in order to rule out other tornadogenesis mechanisms in the simulations. The flow is axisymmetric and Boussinesq with constant eddy viscosity in a neutrally stratified environment. The domain is closed to avoid artificial decoupling of a vortex from the storm-scale circulation. In the principal simulation, the initial condition is a balanced, slowly decaying, Beltrami flow describing an updraft that is rotating cyclonically at midlevels around a low pressure center surrounded by a concentric downdraft that revolves cyclonically but has anticyclonic vorticity. The boundary conditions are no slip on the tangential wind and free slip on the radial or vertical wind to accommodate this initial condition and to allow strong interaction of a vortex with the ground.

Precipitation is released through the top above the updraft and falls to the ground near the updraft–downdraft interface in an annular curtain. The downdraft enhancement induced by the precipitation drag upsets the balance of the Beltrami flow. The downdraft and its outflow toward the axis increase low-level convergence beneath the updraft and transport air with moderately high angular momentum downward and inward where it is entrained and stretched by the updraft. The resulting tornado has a corner region with an intense axial jet and low pressure capped by a vortex breakdown and a transition to a broader vortex aloft (a tornado cyclone). A clear slot of subsiding air with anticyclonic vorticity surrounds the vortex. The vertical kinetic energy of the entire circulation declines dramatically prior to tornado formation.

Corresponding author address: Dr. Robert Davies-Jones, NOAA/National Severe Storms Laboratory, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072-7323. Email: bob.davies-jones@noaa.gov

Save