• Alexander, M. J., 1996: A simulated spectrum of convectively generated gravity waves: Propagation from the tropopause to the mesopause and effects on the middle atmosphere. J. Geophys. Res., 101 , 15711588.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1995: Topographic Effects in Stratified Flows. Cambridge University Press, 482 pp.

  • Baines, P. G., and R. B. Smith, 1993: Upstream stagnation points in stratified flow past obstacles. Dyn. Atmos Oceans., 18 , 105113.

  • Broutman, D., J. W. Rottman, and S. D. Eckermann, 2003: A simplified Fourier method for nonhydrostatic mountain waves. J. Atmos. Sci., 60 , 26862696.

    • Search Google Scholar
    • Export Citation
  • Broutman, D., J. Ma, S. D. Eckermann, and J. Lindeman, 2006: Fourier-ray modeling of transient trapped lee waves. Mon. Wea. Rev., 134 , 28492856.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2000: An intercomparison of model-predicted wave breaking for the 11 January 1972 Boulder windstorm. Mon. Wea. Rev., 128 , 901914.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., A. Dörnbrack, S. B. Vosper, H. Flentje, M. J. Mahoney, T. P. Bui, and K. S. Carslaw, 2006a: Mountain wave–induced polar stratospheric cloud forecasts for aircraft science flights during SOLVE/THESEO 2000. Wea. Forecasting, 21 , 4268.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., D. Broutman, J. Ma, and J. Lindeman, 2006b: Fourier-ray modeling of short wavelength trapped lee waves observed in infrared satellite imagery near Jan Mayen. Mon. Wea. Rev., 134 , 28302848.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., S. L. Vadas, K. Wan, and J. A. Werne, 2006: Mean and variable forcing of the middle atmosphere by gravity waves. J. Atmos. Sol.-Terr. Phys., 68 , 247265.

    • Search Google Scholar
    • Export Citation
  • Kim, Y-J., S. D. Eckermann, and H-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41 , 6598.

    • Search Google Scholar
    • Export Citation
  • Lane, T., R. D. Sharman, R. G. Frehlich, and J. M. Brown, 2006: Numerical simulations of the wake of Kauai. J. Appl. Meteor. Climatol., 45 , 13131331.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and F. Zhang, 2008: Tracking gravity waves in baroclinic jet-front systems. J. Atmos. Sci., 65 , 24022415.

  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44 , 17751800.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2005: Gravity waves excited by jets: Propagation versus generation. Geophys. Res. Lett., 32 .L18802, doi:10.1029/2005GL023730.

    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., and M. Griffiths, 1996: Stratospheric–inertia gravity waves generated in a numerical model of frontogenesis. II: Wave sources, generation mechanisms, and momentum fluxes. Quart. J. Roy. Meteor. Soc., 122 , 11751195.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and D. R. Durran, 1997: Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci., 54 , 534554.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., and N. A. McFarlane, 2000: The parametrization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126 , 23532393.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. C. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

  • Snyder, W. H., R. S. Thompson, R. E. Eskridge, R. E. Lawson, I. P. Castro, J. T. Lee, J. C. R. Hunt, and Y. Ogawa, 1985: The structure of strongly stratified flow over hills: Dividing streamline concept. J. Fluid Mech., 152 , 249288.

    • Search Google Scholar
    • Export Citation
  • Vadas, S. L., and D. C. Fritts, 2004: Thermospheric responses to gravity waves arising from mesoscale convective complexes. J. Atmos. Sol.-Terr. Phys., 66 , 781804.

    • Search Google Scholar
    • Export Citation
  • Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129 , 19892010.

    • Search Google Scholar
    • Export Citation
  • Worthington, R. M., and L. Thomas, 1998: The frequency spectrum of mountain waves. Quart. J. Roy. Meteor. Soc., 124 , 687703.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 3 3 3

Mesoscale Model Initialization of the Fourier Method for Mountain Waves

View More View Less
  • 1 College of Science, George Mason University, Fairfax, Virginia
  • | 2 Computational Physics, Inc., Springfield, Virginia
  • | 3 Space Science Division, Naval Research Laboratory, Washington, D.C
  • | 4 Naval Hydrodynamics Division, Science Applications International Corporation, San Diego, California
Restricted access

Abstract

A Fourier method is combined with a mesoscale model to simulate mountain waves. The mesoscale model describes the nonlinear low-level flow and predicts the emerging wave field above the mountain. This solution serves as the lower boundary condition for the Fourier method, which follows the waves upward to much higher altitudes and downward to the ground to examine parameterizations for the orography and the lower boundary condition. A high-drag case with a Froude number of ⅔ is presented.

Corresponding author address: John Lindeman, College of Science, George Mason University, 4400 University Dr., Fairfax, VA 22030-4444. Email: jlindema@gmu.edu

Abstract

A Fourier method is combined with a mesoscale model to simulate mountain waves. The mesoscale model describes the nonlinear low-level flow and predicts the emerging wave field above the mountain. This solution serves as the lower boundary condition for the Fourier method, which follows the waves upward to much higher altitudes and downward to the ground to examine parameterizations for the orography and the lower boundary condition. A high-drag case with a Froude number of ⅔ is presented.

Corresponding author address: John Lindeman, College of Science, George Mason University, 4400 University Dr., Fairfax, VA 22030-4444. Email: jlindema@gmu.edu

Save