Understanding the Importance of Microphysics and Macrophysics for Warm Rain in Marine Low Clouds. Part I: Satellite Observations

Terence L. Kubar Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Terence L. Kubar in
Current site
Google Scholar
PubMed
Close
,
Dennis L. Hartmann Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dennis L. Hartmann in
Current site
Google Scholar
PubMed
Close
, and
Robert Wood Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert Wood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The importance of macrophysical variables [cloud thickness, liquid water path (LWP)] and microphysical variables (effective radius re, effective droplet concentration Neff) on warm drizzle intensity and frequency across the tropics and subtropics is studied. In this first part of a two-part study, Moderate Resolution Imaging Spectroradiometer (MODIS) optical and CloudSat cloud radar data are used to understand warm rain in marine clouds. Part II uses simple heuristic models. Cloud-top height and LWP substantially increase as drizzle intensity increases. Droplet radius estimated from MODIS also increases with cloud radar reflectivity (dBZ) but levels off as dBZ > 0, except where the influence of continental pollution is present, in which case a monotonic increase of re with drizzle intensity occurs. Off the Asian coast and over the Gulf of Mexico, re values are smaller (by several μm) and Neff values are larger compared to more remote marine regions. For heavy drizzle intensity, both re and Neff values off the Asian coast and over the Gulf of Mexico approach re and Neff values in more remote marine regions.

Drizzle frequency, defined as profiles in which maximum dBZ > −15, increases dramatically and nearly uniformly when cloud tops grow from 1 to 2 km. Drizzle frequencies exceed 90% in all regions when LWPs exceed 250 g m−2 and Neff values are below 50 cm−3, even in regions where drizzle occurs infrequently on the whole. The fact that the relationship among drizzle frequency, LWP, and Neff is essentially the same for all regions suggests a near universality among tropical and subtropical regions.

Corresponding author address: Terence L. Kubar, Jet Propulsion Laboratory, MS 183-518, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. Email: terry.kubar@jpl.nasa.gov

Abstract

The importance of macrophysical variables [cloud thickness, liquid water path (LWP)] and microphysical variables (effective radius re, effective droplet concentration Neff) on warm drizzle intensity and frequency across the tropics and subtropics is studied. In this first part of a two-part study, Moderate Resolution Imaging Spectroradiometer (MODIS) optical and CloudSat cloud radar data are used to understand warm rain in marine clouds. Part II uses simple heuristic models. Cloud-top height and LWP substantially increase as drizzle intensity increases. Droplet radius estimated from MODIS also increases with cloud radar reflectivity (dBZ) but levels off as dBZ > 0, except where the influence of continental pollution is present, in which case a monotonic increase of re with drizzle intensity occurs. Off the Asian coast and over the Gulf of Mexico, re values are smaller (by several μm) and Neff values are larger compared to more remote marine regions. For heavy drizzle intensity, both re and Neff values off the Asian coast and over the Gulf of Mexico approach re and Neff values in more remote marine regions.

Drizzle frequency, defined as profiles in which maximum dBZ > −15, increases dramatically and nearly uniformly when cloud tops grow from 1 to 2 km. Drizzle frequencies exceed 90% in all regions when LWPs exceed 250 g m−2 and Neff values are below 50 cm−3, even in regions where drizzle occurs infrequently on the whole. The fact that the relationship among drizzle frequency, LWP, and Neff is essentially the same for all regions suggests a near universality among tropical and subtropical regions.

Corresponding author address: Terence L. Kubar, Jet Propulsion Laboratory, MS 183-518, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. Email: terry.kubar@jpl.nasa.gov

Save
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Albrecht, B. A., C. W. Fairall, D. W. Thomson, A. B. White, J. B. Snider, and W. H. Schubert, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17 , 8992.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112 , D02201. doi:10.1029/2006JD007547.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J-L., H. Pawlowska, L. Schüller, R. Preusker, J. Fischer, and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57 , 803821.

    • Search Google Scholar
    • Export Citation
  • Bréon, F. M., D. Tanré, and S. Generoso, 2002: Aerosol effect on cloud droplet size monitored from satellite. Science, 295 , 834838.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54 , 148167.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren, 1987: Oceanic phytoplankton, atmospheric sulphur, cloud albedo, and climate. Nature, 326 , 655661.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., R. Wood, S. E. Yuter, and C. S. Bretherton, 2004: Reflectivity and rain rate in and below drizzling stratocumulus. Quart. J. Roy. Meteor. Soc., 130 , 28912918.

    • Search Google Scholar
    • Export Citation
  • Fox, N. I., and A. J. Illingworth, 1997: The potential of a spaceborne cloud radar for the detection of stratocumulus clouds. J. Appl. Meteor., 36 , 676687.

    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., C. W. Fairall, and J. B. Snider, 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with a Kα-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52 , 27882799.

    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., J-L. Brenguier, and I. Sandu, 2008: Relationship between drizzle rate, liquid water path and droplet concentration at the scale of a stratocumulus cloud system. Atmos. Chem. Phys., 8 , 46414654.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7 , 465497.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and D. A. Short, 1980: On the use of Earth radiation budget statistics for studies of clouds and climate. J. Atmos. Sci., 37 , 12331250.

    • Search Google Scholar
    • Export Citation
  • Hindman, E. E., P. V. Hobbs, and L. F. Radke, 1977: Cloud condensation nucleus size distributions and their effects on cloud droplet size distributions. J. Atmos. Sci., 34 , 951956.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Jensen, M. P., A. M. Vogelmann, W. D. Collins, G. J. Zhang, and E. P. Luke, 2008: Investigation of regional and seasonal variations in marine boundary layer cloud properties from MODIS observations. J. Climate, 21 , 49554973.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S-C. Tsay, S. Platnick, M. Wang, and K-N. Liou, 1997: Cloud retrieval algorithms for MODIS: Optical thickness, effective particle radius, and thermodynamic phase. MODIS Algorithm Theoretical Basis Doc. ATBD-MOD-05, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Kubar, T. L., and D. L. Hartmann, 2008: Vertical structure of tropical oceanic convective clouds and its relation to precipitation. Geophys. Res. Lett., 35 , L03804. doi:10.1029/2007GL032811.

    • Search Google Scholar
    • Export Citation
  • Leon, D. C., Z. Wang, and D. Liu, 2008: Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). J. Geophys. Res., 113 , D00A14. doi:10.1029/2008JD009835.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., B. Geerts, M. Miller, P. Daum, and R. McGraw, 2008: Threshold radar reflectivity for drizzling clouds. Geophys. Res. Lett., 35 , L03807. doi:10.1029/2007GL031201.

    • Search Google Scholar
    • Export Citation
  • Mace, G., 2007: Level 2 GEOPROF product process description and interface control document algorithm version 5.3, NASA Jet Propulsion Laboratory, 44 pp.

  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius and droplets in warm stratocumulus clouds. J. Atmos. Sci., 51 , 18231842.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., T. Uttal, and D. A. Hazen, 2004: Evaluation of radar reflectivity–based estimates of water content in stratiform marine clouds. J. Appl. Meteor., 43 , 405419.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57 , 295311.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47 , 18781893.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci., 52 , 40434059.

    • Search Google Scholar
    • Export Citation
  • Neiburger, M., D. S. Johnson, and C. W. Chien, 1961: The inversion over the eastern North Pacific Ocean. Studies of the Structure of the Atmosphere over the Eastern Pacific Ocean in Summer, Vol. I, University of California Press, 1–94.

    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., and J-L. Brenguier, 2003: An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations. J. Geophys. Res., 108 , 8630. doi:10.1029/2002JD002679.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 2006: A First Course in Atmospheric Radiation. 2nd ed. Sundog, 459 pp.

  • Rauber, R. M., and Coauthors, 2007: Rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88 , 19121928.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., T. C. Yeh, J. S. Malkus, and N. E. LaSeur, 1951: The northeast trade of the Pacific Ocean. Quart. J. Roy. Meteor. Soc., 77 , 598626.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Butterworth Heinemann, 290 pp.

  • Slingo, A., 1990: Sensitivity of the Earth’s radiation budget to changes in low clouds. Nature, 343 , 4951.

  • Squires, P., 1956: The microstructure of cumuli in maritime and continental air. Tellus, 8 , 443444.

  • Squires, P., 1958: The microstructure and colloidal stability of warm clouds. Part I: The relation between structure and stability. Tellus, 10 , 256262.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and J. M. Haynes, 2007: Near global observations of the warm rain coalescence process. Geophys. Res. Lett., 34 , L20805. doi:10.1029/2007GL030259.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113 , D00A18. doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., and G. L. Stephens, 2008: Global identification of warm cloud microphysical processes with combined use of A-Train observations. Geophys. Res. Lett., 35 , L08805. doi:10.1029/2008GL033590.

    • Search Google Scholar
    • Export Citation
  • Szczodrak, M., P. H. Austin, and P. B. Krummel, 2001: Variability of optical depth and effective radius in marine stratocumulus clouds. J. Atmos. Sci., 58 , 29122926.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8 , 12511256.

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34 , 11491152.

  • vanZanten, M. C., B. Stevens, G. Vali, and D. H. Lenschow, 2005: Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci., 62 , 88106.

    • Search Google Scholar
    • Export Citation
  • Wilcox, E. M., Harshvardhan, and S. Platnick, 2009: Estimate of the impact of absorbing aerosol over land on the MODIS retrievals of cloud optical thickness and effective radius using two independent retrievals of liquid water path. J. Geophys. Res., 114 , D05210. doi:10.1029/2008JD010589.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. J. Atmos. Sci., 62 , 30343050.

  • Wood, R., 2006a: Rate of loss of cloud droplets by coalescence in warm clouds. J. Geophys. Res., 111 , D21205. doi:10.1029/2006JD007553.

  • Wood, R., 2006b: Relationships between optical depth, liquid water path, droplet concentration, and effective radius in adiabatic layer cloud. University of Washington, 3 pp. [Available online at http://www.atmos.washington.edu/~robwood/papers/chilean_plume/optical_depth_relations.pdf].

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17 , 35763588.

    • Search Google Scholar
    • Export Citation
  • Wood, R., T. L. Kubar, and D. L. Hartmann, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: Heuristic models of rain formation. J. Atmos. Sci., 29732990.

    • Search Google Scholar
    • Export Citation
  • Wu, D., Y. Hu, M. P. McCormick, K-M. Xu, Z. Liu, B. Smith, A. H. Omar, and F-L. Chang, 2008: Deriving marine-boundary-layer lapse rate from collocated CALIPSO, MODIS, and AMSR-E data to study low-cloud height statistics. IEEE Geosci. Remote Sens. Lett., 5 , 649652.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., E. R. Westwater, C. Fairall, and D. Hazen, 2005: Ship-based liquid water path estimates in marine stratocumulus. J. Geophys. Res., 110 , D20206. doi:10.1029/2005JD005833.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 988 388 64
PDF Downloads 608 209 15