Diagnosis of the MJO Modulation of Tropical Cyclogenesis Using an Empirical Index

Suzana J. Camargo Lamont-Doherty Earth Observatory, The Earth Institute at Columbia University, Palisades, New York

Search for other papers by Suzana J. Camargo in
Current site
Google Scholar
PubMed
Close
,
Matthew C. Wheeler Centre for Australian Weather and Climate Research, Melbourne, Australia

Search for other papers by Matthew C. Wheeler in
Current site
Google Scholar
PubMed
Close
, and
Adam H. Sobel Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, Columbia University, New York, New York

Search for other papers by Adam H. Sobel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The modulation of tropical cyclone activity by the Madden–Julian oscillation (MJO) is explored using an empirical genesis potential (GP) index. Composite anomalies of the genesis index associated with the different MJO phases are consistent with the composite anomalies in TC genesis frequency that occur in the same phases, indicating that the index captures the changes in the environment that are at least in part responsible for the genesis frequency changes. Of the four environmental variables that enter the genesis potential index, the midlevel relative humidity makes the largest contribution to the MJO composite GP anomalies. The second largest contribution comes from the low-level absolute vorticity, and only very minor contributions come from the vertical wind shear and potential intensity.

When basin-integrated MJO composite anomalies of the GP index are regressed against basin-integrated composite anomalies of TC genesis frequency, the results differ quantitatively from those obtained from the analogous calculation performed on the annual climatologies in the two quantities. The GP index captures the MJO modulation of TC genesis to a lesser degree than the climatological annual cycle of genesis (to which it was originally tuned). This may be due to weaknesses of the reanalysis or indicative of the importance of precursor disturbances, not well captured in the GP index computed from weekly data, to the intraseasonal TC genesis frequency fluctuations.

Corresponding author address: Suzana J. Camargo, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964–8000. Email: suzana@ldeo.columbia.edu

Abstract

The modulation of tropical cyclone activity by the Madden–Julian oscillation (MJO) is explored using an empirical genesis potential (GP) index. Composite anomalies of the genesis index associated with the different MJO phases are consistent with the composite anomalies in TC genesis frequency that occur in the same phases, indicating that the index captures the changes in the environment that are at least in part responsible for the genesis frequency changes. Of the four environmental variables that enter the genesis potential index, the midlevel relative humidity makes the largest contribution to the MJO composite GP anomalies. The second largest contribution comes from the low-level absolute vorticity, and only very minor contributions come from the vertical wind shear and potential intensity.

When basin-integrated MJO composite anomalies of the GP index are regressed against basin-integrated composite anomalies of TC genesis frequency, the results differ quantitatively from those obtained from the analogous calculation performed on the annual climatologies in the two quantities. The GP index captures the MJO modulation of TC genesis to a lesser degree than the climatological annual cycle of genesis (to which it was originally tuned). This may be due to weaknesses of the reanalysis or indicative of the importance of precursor disturbances, not well captured in the GP index computed from weekly data, to the intraseasonal TC genesis frequency fluctuations.

Corresponding author address: Suzana J. Camargo, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964–8000. Email: suzana@ldeo.columbia.edu

Save
  • Aiyyer, A. R., and J. Molinari, 2008: MJO and tropical cyclogenesis in the Gulf of Mexico and Eastern Pacific: Case study and idealized numerical modeling. J. Atmos. Sci., 65 , 26912704.

    • Search Google Scholar
    • Export Citation
  • Bessafi, M., and M. C. Wheeler, 2006: Modulation of South Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134 , 638656.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 52 , 233240.

  • Bister, M., and K. A. Emanuel, 2002a: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res., 107 , 4801. doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002b: Low frequency variability of tropical cyclone potential intensity. 2. Climatology for 1982–1995. J. Geophys. Res., 107 , 4621. doi:10.1029/2001JD000780.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20 , 48194834.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007b: Tropical cyclone genesis potential index in climate models. Tellus, 59A , 428443.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and P. J. Klotzbach, 2009: The influence of natural climate variability on tropical cyclones and seasonal forecasts of tropical cyclone activity. Global Perspectives on Tropical Cyclones. 2nd ed. World Scientific, in press.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45 , 11431155.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52 , 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.

    • Search Google Scholar
    • Export Citation
  • Hall, J. D., A. J. Matthews, and D. J. Karoli, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Mon. Wea. Rev., 129 , 29702982.

    • Search Google Scholar
    • Export Citation
  • Ho, C-H., J-H. Kim, J-H. Jeong, H-S. Kim, and D. Chen, 2006: Variation of tropical cyclone activity in the South Indian Ocean: El Niño–Southern Oscillation and Madden–Julian oscillation effects. J. Geophys. Res., 111 , D22101. doi:10.1029/2006JD007289.

    • Search Google Scholar
    • Export Citation
  • Hsu, H. H., C. H. Hung, A. K. Lo, C. C. Wu, and C. W. Hung, 2008: Influence of tropical cyclones on the estimation of climate variability in the tropical western North Pacific. J. Climate, 21 , 29602975.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437441.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Leroy, A., and M. C. Wheeler, 2008: Statistical prediction of weekly tropical cyclone activity in the Southern Hemisphere. Mon. Wea. Rev., 136 , 36373654.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72 , 401412.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Maloney, E. D., and D. L. Hartmann, 2000a: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13 , 14511460.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000b: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science, 287 , 20022004.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58 , 25452558.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Knight, M. Dickinson, D. Vollaro, and S. Skubis, 1997: Potential vorticity, easterly waves, and Eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 125 , 26992708.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66 , 823839.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative–convective equilibrium. Quart. J. Roy. Meteor. Soc., 133 , 20852107.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012. doi:10.1256/qj.04.176.

  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44 , 4361.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132 , 19171932.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43 , RG2003. doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4035 1198 136
PDF Downloads 1519 413 32