The Role of Convective Moistening in the Madden–Julian Oscillation

Katherine Thayer-Calder Colorado State University, Fort Collins, Colorado

Search for other papers by Katherine Thayer-Calder in
Current site
Google Scholar
PubMed
Close
and
David A. Randall Colorado State University, Fort Collins, Colorado

Search for other papers by David A. Randall in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study compares two models that differ primarily in their cloud parameterizations and produce extremely different simulations of the Madden–Julian oscillation (MJO). The Community Atmosphere Model (CAM) version 3.0 from NCAR uses the Zhang–McFarlane scheme for deep convection and does not produce an MJO. The “superparameterized” version of the CAM (SP-CAM) replaces the cloud parameterizations with a two-dimensional cloud-resolving model (CRM) in each grid column and produces an extremely vigorous MJO.

This analysis shows that the CAM is unable to produce high-humidity regions in the mid- to lower troposphere because of a lack of coupling between parameterized convection and environmental relative humidity. The SP-CAM produces an overly moist column due in part to excessive near-surface winds and evaporation during strong convective events. In the real tropics and the SP-CAM, convection within a high-humidity environment produces intense latent heating, which excites the large-scale circulation that is the signature of the MJO. The authors suggest that a model must realistically represent convective processes that moisten the entire tropical troposphere in order to produce a simulation of the MJO.

Corresponding author address: Katherine Thayer-Calder, Colorado State University, Department of Atmospheric Science, Fort Collins, CO 80523. Email: katetc@atmos.colostate.edu

Abstract

This study compares two models that differ primarily in their cloud parameterizations and produce extremely different simulations of the Madden–Julian oscillation (MJO). The Community Atmosphere Model (CAM) version 3.0 from NCAR uses the Zhang–McFarlane scheme for deep convection and does not produce an MJO. The “superparameterized” version of the CAM (SP-CAM) replaces the cloud parameterizations with a two-dimensional cloud-resolving model (CRM) in each grid column and produces an extremely vigorous MJO.

This analysis shows that the CAM is unable to produce high-humidity regions in the mid- to lower troposphere because of a lack of coupling between parameterized convection and environmental relative humidity. The SP-CAM produces an overly moist column due in part to excessive near-surface winds and evaporation during strong convective events. In the real tropics and the SP-CAM, convection within a high-humidity environment produces intense latent heating, which excites the large-scale circulation that is the signature of the MJO. The authors suggest that a model must realistically represent convective processes that moisten the entire tropical troposphere in order to produce a simulation of the MJO.

Corresponding author address: Katherine Thayer-Calder, Colorado State University, Department of Atmospheric Science, Fort Collins, CO 80523. Email: katetc@atmos.colostate.edu

Save
  • Araligidad, N. M., and E. D. Maloney, 2008: Wind-driven latent heat flux and the intraseasonal oscillation. Geophys. Res. Lett., 35 , L04815. doi:10.1029/2007GL032746.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. Bretherton, 2005: The relationship between wind speed and precipitation in the Pacific ITCZ. J. Climate, 18 , 43174328.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vittart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134 , 13371351. doi:10.1002/qj.289.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64 , 23322354.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66 , 32773296.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50 , 29222939.

  • Bony, S., and K. Emanuel, 2005: On the role of moist processes in tropical intraseasonal variability: Cloud–radiation and moisture–convection feedbacks. J. Atmos. Sci., 62 , 27702789.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17 , 15171528.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., L. M. Hartten, and R. H. Johnson, 1997: Impacts of merging profiler and rawinsonde winds on TOGA COARE analyses. J. Atmos. Oceanic Technol., 14 , 12641279.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 226 pp.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., D. A. Randall, and M. F. Khairoutdinov, 2007: Convective precipitation variability as a tool for general circulation model analysis. J. Climate, 20 , 91112.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46 , 34313456.

  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73 , 19621970.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Grabowski, W. W., and M. W. Moncrieff, 2004: Moisture–convection feedback in the tropics. Quart. J. Roy. Meteor. Soc., 130 , 30813104. doi:10.1256/qj.03.135.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res., 99 , 55515568.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. M. Caron, S. G. Yeager, K. W. Oleson, M. K. Holland, J. E. Truesdale, and P. J. Rasch, 2006: Simulation of the global hydrological cycle in the CCSM Community Atmosphere Model Version 3 (CAM3): Mean features. J. Climate, 19 , 21992221.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28 , 36173620.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60 , 607625.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., D. A. Randall, and C. DeMott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62 , 21362154.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., C. DeMott, and D. A. Randall, 2008: Evaluation of the simulated interannual and subseasonal variability in an AMIP-style simulation using the CSU Multiscale Modeling Framework. J. Climate, 21 , 413431.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, in press.

  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Lin, J., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19 , 26652690.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., and G. L. Stephens, 2006: An enhanced convection-wind-evaporation feedback in a superparameterization GCM (SP-GCM) depiction of the Asian summer monsoon. Geophys. Res. Lett., 33 , L06707. doi:10.1029/2005GL025060.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Matsuno, T., 1966: Numerical integration of the primitive equations by a simulated backward differencing method. J. Meteor. Soc. Japan, 44 , 7684.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., J. Mather, and T. P. Ackerman, 2007: Analysis of tropical radiative heating profiles: A comparison of models and observations. J. Geophys. Res., 112 , D14218. doi:10.1029/2006JD008290.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115 , 312.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1995: Regulation of moist convection over the west Pacific warm pool. J. Atmos. Sci., 52 , 39453959.

  • Raymond, D. J., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126 , 889898.

  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58 , 28072819.

  • Raymond, D. J., and Z. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22 , 30313046.

  • Shinoda, T., H. H. Hendon, and J. Glick, 1998: Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J. Climate, 11 , 16851702.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2008: The role of surface heat fluxes in tropical intraseasonal oscillations. Nature Geosci., 1 , 653657. doi:10.1038/ngeo312.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds.,. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. J. Webster, R. H. Johnson, R. Engelen, and T. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. J. Climate, 17 , 22132224.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J. Climate, 19 , 916934.

  • Sundqvist, H., 1988: Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation. Physically Based Modelling and Simulation of Climate and Climate Change, M. E. Schlesinger, Ed., Kluwer Academic, 433–461.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2009: A multiscale modeling system: Developments, applications, and critical issues. Bull. Amer. Meteor. Soc., 90 , 515534.

    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., 2008: The role of moisture in the MJO: A comparison of tropical convection processes in the CAM and super-parameterized CAM. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 74 pp.

  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30–60-day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66 , 883901.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012. doi:10.1256/qj.04.176.

  • Wang, W., and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12 , 14231457.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73 , 13771416.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55 , 16131627.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., B. Chen, and W-W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57 , 23742396.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43 , RG2003. doi:10.1029/2004RG000158.

  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1303 970 267
PDF Downloads 236 59 4