Resolution Dependence of the Tropopause Inversion Layer in an Idealized Model for Upper-Tropospheric Anticyclones

Andreas Müller University of Mainz, Mainz, Germany

Search for other papers by Andreas Müller in
Current site
Google Scholar
PubMed
Close
and
Volkmar Wirth University of Mainz, Mainz, Germany

Search for other papers by Volkmar Wirth in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This note investigates the dependence of the extratropical tropopause inversion layer (TIL) on numerical resolution in an idealized modeling framework. Axisymmetric upper-tropospheric anticyclones are constructed by specifying potential vorticity (PV) and solving the nonlinear PV-inversion problem. The PV distribution has a smooth but near-discontinuous change of PV across the tropopause in a transition zone with vertical depth δ. For fixed δ the strength of the TIL changes with changing resolution until the transition zone is resolved by a fairly large number of grid points. The quality-controlled numerical solutions are used to study the behavior for δ → 0. This limit can lead to very strong TILs, but no indications for divergent behavior were found.

Corresponding author address: Andreas Müller, Institute for Atmospheric Physics, University of Mainz, Becherweg 21, 55099 Mainz, Germany. Email: andrmue@uni-mainz.de

Abstract

This note investigates the dependence of the extratropical tropopause inversion layer (TIL) on numerical resolution in an idealized modeling framework. Axisymmetric upper-tropospheric anticyclones are constructed by specifying potential vorticity (PV) and solving the nonlinear PV-inversion problem. The PV distribution has a smooth but near-discontinuous change of PV across the tropopause in a transition zone with vertical depth δ. For fixed δ the strength of the TIL changes with changing resolution until the transition zone is resolved by a fairly large number of grid points. The quality-controlled numerical solutions are used to study the behavior for δ → 0. This limit can lead to very strong TILs, but no indications for divergent behavior were found.

Corresponding author address: Andreas Müller, Institute for Atmospheric Physics, University of Mainz, Becherweg 21, 55099 Mainz, Germany. Email: andrmue@uni-mainz.de

Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111 , D04104. doi:10.1029/2005JD006301.

  • Birner, T., A. Dörnbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29 , 1700. doi:10.1029/2002GL015142.

    • Search Google Scholar
    • Export Citation
  • Birner, T., D. Sankey, and T. G. Shepherd, 2006: The tropopause inversion layer in models and analyses. Geophys. Res. Lett., 33 , L14804. doi:10.1029/2006GL026549.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and P. Forster, 2007: The extratropical tropopause inversion layer: Global observations with GPS data, and a radiative forcing mechanism. J. Atmos. Sci., 64 , 44894496.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., and L. M. Polvani, 2007: Dynamical formation of an extra-tropical tropopause inversion layer in a relatively simple general circulation model. Geophys. Res. Lett., 34 , L17806. doi:10.1029/2007GL030564.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., 1986: Synoptic-scale disturbances with circular symmetry. Mon. Wea. Rev., 114 , 13841389.

  • Wirth, V., 2000: Thermal versus dynamical tropopause in upper-tropospheric balanced flow anomalies. Quart. J. Roy. Meteor. Soc., 126 , 299317.

    • Search Google Scholar
    • Export Citation
  • Wirth, V., 2001: Cyclone–anticyclone asymmetry concerning the height of the thermal and the dynamical tropopause. J. Atmos. Sci., 58 , 2637.

    • Search Google Scholar
    • Export Citation
  • Wirth, V., 2003: Static stability in the extratropical tropopause region. J. Atmos. Sci., 60 , 13951409.

  • Wirth, V., 2004: A dynamical mechanism for tropopause sharpening. Meteor. Z., 13 , 477484.

  • Wirth, V., and T. Szabo, 2007: Sharpness of the extratropical tropopause in baroclinic life cycle experiments. Geophys. Res. Lett., 34 , L02809. doi:10.1029/2006GL028369.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 312 225 61
PDF Downloads 58 25 1