Modeling Mesoscale Cellular Structures and Drizzle in Marine Stratocumulus. Part II: The Microphysics and Dynamics of the Boundary Region between Open and Closed Cells

Hailong Wang Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Hailong Wang in
Current site
Google Scholar
PubMed
Close
and
Graham Feingold NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Graham Feingold in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This is the second of two companion papers on modeling of mesoscale cellular structures and drizzle in marine stratocumulus. In the first, aerosol–cloud–precipitation interactions and dynamical feedbacks were investigated to study the formation and evolution of open and closed cellular structures separately. In this paper, coexisting open and closed cells and how they influence one another are examined in a model domain of 180 × 60 × 1.5 km3. Simulations show that gradients in aerosol at the open–closed-cell boundary cause gradients in precipitation that generate a mesoscale circulation. The circulation promotes precipitation in the polluted closed cells but suppresses it in open cells by transporting water vapor to the closed-cell regime and carrying drier air and aerosol back to the open cells. The strength of this circulation depends on the contrast in precipitation under clean and polluted conditions at the boundary. Ship plumes emitted into clean, precipitating regions, simulated as a special case of a clean–polluted boundary, develop a similar circulation. Drizzle in the ship track is first suppressed by the increase in aerosol particles but later recovers and becomes even stronger because the local circulation enhances liquid water path owing to the convergence of water vapor from the region adjacent to the track. This circulation modifies the transport and mixing of ship plumes and enhances their dispersal. Finally, results show that whereas ship emissions do increase cloud albedo in regions of open cells, even the addition of very large aerosol concentrations cannot transform an open cellular structure to a closed one, for the case considered.

Corresponding author address: Hailong Wang, 325 Broadway, R/CSD2, Boulder, CO 80305. Email: hailong.wang@noaa.gov

Abstract

This is the second of two companion papers on modeling of mesoscale cellular structures and drizzle in marine stratocumulus. In the first, aerosol–cloud–precipitation interactions and dynamical feedbacks were investigated to study the formation and evolution of open and closed cellular structures separately. In this paper, coexisting open and closed cells and how they influence one another are examined in a model domain of 180 × 60 × 1.5 km3. Simulations show that gradients in aerosol at the open–closed-cell boundary cause gradients in precipitation that generate a mesoscale circulation. The circulation promotes precipitation in the polluted closed cells but suppresses it in open cells by transporting water vapor to the closed-cell regime and carrying drier air and aerosol back to the open cells. The strength of this circulation depends on the contrast in precipitation under clean and polluted conditions at the boundary. Ship plumes emitted into clean, precipitating regions, simulated as a special case of a clean–polluted boundary, develop a similar circulation. Drizzle in the ship track is first suppressed by the increase in aerosol particles but later recovers and becomes even stronger because the local circulation enhances liquid water path owing to the convergence of water vapor from the region adjacent to the track. This circulation modifies the transport and mixing of ship plumes and enhances their dispersal. Finally, results show that whereas ship emissions do increase cloud albedo in regions of open cells, even the addition of very large aerosol concentrations cannot transform an open cellular structure to a closed one, for the case considered.

Corresponding author address: Hailong Wang, 325 Broadway, R/CSD2, Boulder, CO 80305. Email: hailong.wang@noaa.gov

Save
  • Ackerman, A. S., O. B. Toon, D. E. Stevens, and J. A. Coakley Jr., 2003: Enhancement of cloud cover and suppression of nocturnal drizzle in stratocumulus polluted by haze. Geophys. Res. Lett., 30 , 1381. doi:10.1029/2002GL016634.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432 , 10141017.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Coakley Jr., J. A., and C. D. Walsh, 2002: Limits to the aerosol indirect radiative effect derived from observations of ship tracks. J. Atmos. Sci., 59 , 668680.

    • Search Google Scholar
    • Export Citation
  • Coakley Jr., J. A., and Coauthors, 2000: The appearance and disappearance of ship tracks on large spatial scales. J. Atmos. Sci., 57 , 27652778.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., S. E. Yuter, R. Wood, and C. S. Bretherton, 2007: The three-dimensional structure and kinematics of drizzling stratocumulus. Mon. Wea. Rev., 135 , 37673784.

    • Search Google Scholar
    • Export Citation
  • Conover, J. H., 1966: Anomalous cloud lines. J. Atmos. Sci., 23 , 778785.

  • Durkee, P. A., K. J. Noone, and R. T. Bluth, 2000: The Monterey Area Ship Track experiment. J. Atmos. Sci., 57 , 25232541.

  • Feingold, G., B. Stevens, W. R. Cotton, and A. S. Frisch, 1996: The relationship between drop in-cloud residence time and drizzle production in numerically simulated stratocumulus clouds. J. Atmos. Sci., 53 , 11081122.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., R. L. Walko, B. Stevens, and W. R. Cotton, 1998: Simulations of marine stratocumulus using a new microphysical parameterization scheme. Atmos. Res., 47–48 , 505528.

    • Search Google Scholar
    • Export Citation
  • Ferek, R. J., and Coauthors, 2000: Drizzle suppression in ship tracks. J. Atmos. Sci., 57 , 27072728.

  • Garay, M. J., R. Davies, C. Averill, and J. A. Westphal, 2004: Actinoform clouds: Overlooked examples of cloud self-organization at the mesoscale. Bull. Amer. Meteor. Soc., 85 , 15851594.

    • Search Google Scholar
    • Export Citation
  • Gassó, S., 2008: Satellite observations of the impact of weak volcanic activity on marine clouds. J. Geophys. Res., 113 , D14S19. doi:10.1029/2007JD009106.

    • Search Google Scholar
    • Export Citation
  • Hill, A., G. Feingold, and H. Jiang, 2009: The influence of entrainment and mixing assumption on aerosol–cloud interactions in marine stratocumulus. J. Atmos. Sci., 66 , 14501464.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and Coauthors, 2000: Emissions from ships with respect to their effects on clouds. J. Atmos. Sci., 57 , 25702590.

  • Jiang, H., G. Feingold, and W. R. Cotton, 2002: Simulations of aerosol-cloud-dynamical feedbacks resulting from entrainment of aerosol into the marine boundary layer during the Atlantic Stratocumulus Transition Experiment. J. Geophys. Res., 107 , 4813. doi:10.1029/2001JD001502.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., Y. L. Kogan, D. K. Lilly, D. W. Johnson, G. E. Innis, P. A. Durkee, and K. E. Nielsen, 2000: Modeling of ship effluent transport and its sensitivity to boundary layer structure. J. Atmos. Sci., 57 , 27792791.

    • Search Google Scholar
    • Export Citation
  • Lu, M. L., and J. H. Seinfeld, 2005: Study of the aerosol indirect effect by large-eddy simulation of marine stratocumulus. J. Atmos. Sci., 62 , 39093932.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 , (D14). 1666316682.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2000: The role of background cloud microphysics in the radiative formation of ship tracks. J. Atmos. Sci., 57 , 26072624.

    • Search Google Scholar
    • Export Citation
  • Radke, L. F., J. A. Coakley Jr., and M. D. King, 1989: Direct and remote sensing observations of the effects of ships on clouds. Science, 246 , 11461149.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., Y. J. Kaufman, and I. Koren, 2006: Switching cloud cover and dynamical regimes from open to closed Benard cells in response to the suppression of precipitation by aerosols. Atmos. Chem. Phys., 6 , 25032511.

    • Search Google Scholar
    • Export Citation
  • Savic-Jovcic, V., and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65 , 15871605.

    • Search Google Scholar
    • Export Citation
  • Segrin, M. S., J. A. Coakley, and W. R. Tahnk, 2007: MODIS observations of ship tracks in summertime stratus off the west coast of the United States. J. Atmos. Sci., 64 , 43304345.

    • Search Google Scholar
    • Export Citation
  • Sharon, T. M., B. A. Albrecht, H. H. Jonsson, P. Minnis, M. M. Khaiyer, T. M. van Reken, J. Seinfeld, and R. Flagan, 2006: Aerosol and cloud microphysical characteristics of rifts and gradients in maritime stratocumulus clouds. J. Atmos. Sci., 63 , 983997.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Stevens, B., W. R. Cotton, G. Feingold, and C-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55 , 36163638.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and chemistry of marine stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84 , 579593.

  • Stevens, B., G. Vali, K. Comstock, R. Wood, M. C. vanZanten, P. H. Austin, C. S. Bretherton, and D. H. Lenschow, 2005: Pockets of open cells and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86 , 5157.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., and B. Stevens, 2005: Observations of the structure of heavily precipitating marine stratocumulus. J. Atmos. Sci., 62 , 43274342.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and G. Feingold, 2009: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66 , 32373256.

    • Search Google Scholar
    • Export Citation
  • Wang, H., W. C. Skamarock, and G. Feingold, 2009: Evaluation of scalar advection schemes in the Advanced Research WRF model using large-eddy simulations of aerosol–cloud interactions. Mon. Wea. Rev., 137 , 25472558.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Q. Wang, and G. Feingold, 2003: Turbulence, condensation, and liquid water transport in numerically simulated nonprecipitating stratocumulus clouds. J. Atmos. Sci., 60 , 262278.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection. J. Climate, 19 , 17481764.

    • Search Google Scholar
    • Export Citation
  • Wood, R., K. K. Comstock, C. S. Bretherton, C. Cornish, J. Tomlinson, D. R. Collins, and C. Fairall, 2008: Open cellular structure in marine stratocumulus sheets. J. Geophys. Res., 113 , D12207. doi:10.1029/2007JD009371.

    • Search Google Scholar
    • Export Citation
  • Xue, H., G. Feingold, and B. Stevens, 2008: Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci., 65 , 392406.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1913 1323 338
PDF Downloads 546 166 25