Impact of Airborne Doppler Radar Data Assimilation on the Numerical Simulation of Intensity Changes of Hurricane Dennis near a Landfall

Zhaoxia Pu Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Zhaoxia Pu in
Current site
Google Scholar
PubMed
Close
,
Xuanli Li Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Xuanli Li in
Current site
Google Scholar
PubMed
Close
, and
Juanzhen Sun National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Juanzhen Sun in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Accurate forecasting of a hurricane’s intensity changes near its landfall is of great importance in making an effective hurricane warning. This study uses airborne Doppler radar data collected during the NASA Tropical Cloud Systems and Processes (TCSP) field experiment in July 2005 to examine the impact of airborne radar observations on the short-range numerical simulation of hurricane track and intensity changes. A series of numerical experiments is conducted for Hurricane Dennis (2005) to study its intensity changes near a landfall. Both radar reflectivity and radial velocity–derived wind fields are assimilated into the Weather Research and Forecasting (WRF) model with its three-dimensional variational data assimilation (3DVAR) system. Numerical results indicate that the radar data assimilation has greatly improved the simulated structure and intensity changes of Hurricane Dennis. Specifically, the assimilation of radar reflectivity data shows a notable influence on the thermal and hydrometeor structures of the initial vortex and the precipitation structure in the subsequent forecasts, although its impact on the intensity and track forecasts is relatively small. In contrast, assimilation of radar wind data results in moderate improvement in the storm-track forecast and significant improvement in the intensity and precipitation forecasts of Hurricane Dennis. The hurricane landfall, intensification, and weakening during the simulation period are well captured by assimilating both radar reflectivity and wind data.

Corresponding author address: Dr. Zhaoxia Pu, Department of Atmospheric Sciences, University of Utah, 135 S 1460E, Rm. 819, Salt Lake City, UT 84112. Email: zhaoxia.pu@utah.edu

This article included in the TCSP NAMMA special collection.

Abstract

Accurate forecasting of a hurricane’s intensity changes near its landfall is of great importance in making an effective hurricane warning. This study uses airborne Doppler radar data collected during the NASA Tropical Cloud Systems and Processes (TCSP) field experiment in July 2005 to examine the impact of airborne radar observations on the short-range numerical simulation of hurricane track and intensity changes. A series of numerical experiments is conducted for Hurricane Dennis (2005) to study its intensity changes near a landfall. Both radar reflectivity and radial velocity–derived wind fields are assimilated into the Weather Research and Forecasting (WRF) model with its three-dimensional variational data assimilation (3DVAR) system. Numerical results indicate that the radar data assimilation has greatly improved the simulated structure and intensity changes of Hurricane Dennis. Specifically, the assimilation of radar reflectivity data shows a notable influence on the thermal and hydrometeor structures of the initial vortex and the precipitation structure in the subsequent forecasts, although its impact on the intensity and track forecasts is relatively small. In contrast, assimilation of radar wind data results in moderate improvement in the storm-track forecast and significant improvement in the intensity and precipitation forecasts of Hurricane Dennis. The hurricane landfall, intensification, and weakening during the simulation period are well captured by assimilating both radar reflectivity and wind data.

Corresponding author address: Dr. Zhaoxia Pu, Department of Atmospheric Sciences, University of Utah, 135 S 1460E, Rm. 819, Salt Lake City, UT 84112. Email: zhaoxia.pu@utah.edu

This article included in the TCSP NAMMA special collection.

Save
  • Aberson, S. D., and B. J. Etherton, 2006: Targeting and data assimilation studies during Hurricane Humberto (2001). J. Atmos. Sci., 63 , 175186.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y. R. Guo, and Q. N. Xiao, 2004a: A three-dimensional (3DVAR) data assimilation system for use with MM5: Implementation and initial results. Mon. Wea. Rev., 132 , 897914.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., M-S. Lee, Y-R. Guo, W. Huang, Q-N. Xiao, and R. Rizvi, 2004b: WRF variational data assimilation development at NCAR. Preprints, WRF/MM5 Users’ Workshop, Boulder, CO, 5.1.

    • Search Google Scholar
    • Export Citation
  • Beven, J., cited. 2005: Tropical cyclone report: Hurricane Dennis, 4–13 July 2005. National Hurricane Center Report, 25 pp. [Available online at http://www.nhc.noaa.gov/pdf/TCR-AL042005_Dennis.pdf].

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J. N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var using an incremental approach. Quart. J. Roy. Meteor. Soc., 120 , 13671387.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., S. J. Lord, and F. D. Marks Jr., 1988: Dropwindsonde and radar observations of the eye of Hurricane Gloria (1985). Mon. Wea. Rev., 116 , 12371244.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., 2005: Real-time dissemination of hurricane wind fields determined from airborne Doppler radar. National Hurricane Center Tropical Prediction Center JHT Project Final Rep, 38 pp. [Available online at http://www.nhc.noaa.gov/jht/2003-2005reports/DOPLRgamache_JHTfinalreport.pdf].

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127 , 21282142.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29 , 1693. doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Halverson, J., and Coauthors, 2007: NASA’s Tropical Cloud Systems and Processes experiment. Bull. Amer. Meteor. Soc., 88 , 867882.

  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61 , 12091232.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., and J-O. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42 , 129151.

  • Houze Jr., R. A., and Coauthors, 2006: The Hurricane Rainband and Intensity Change Experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87 , 15031521.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., S. S. Chen, B. F. Smull, W-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315 , 12351239.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP global model. NCEP Office Note 437, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1961: Marked changes in the characteristics of the eye of intense typhoons between the deepening and filling stages. J. Meteor., 18 , 779789.

    • Search Google Scholar
    • Export Citation
  • Kakar, R., M. Goodman, R. Hood, and A. Guillory, 2006: Overview of the Convection and Moisture Experiment (CAMEX). J. Atmos. Sci., 63 , 518.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58 , 10791090.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121 , 17031713.

  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41 , 28362848.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112 , 11771194.

  • Marks, F. D., 2003: State of the science: Radar view of tropical cyclones. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 33–74.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., P. G. Black, M. T. Montgomery, and R. W. Burpee, 2007: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136 , 12371259.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61 , 422439.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., H. Zhang, G. Heymsfield, R. Hood, J. Dudhia, J. B. Halverson, and F. Marks, 2006: Factors affecting the evolution of Hurricane Erin (2001) and the distributions of hydrometeors: Role of microphysical processes. J. Atmos. Sci., 63 , 127150.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 , (D14). 1666316682.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63 , 355386.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120 , 17471763.

    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60 , 23492371.

  • Pu, Z., X. Li, C. Velden, S. Aberson, and W. T. Liu, 2008: Impact of aircraft dropsonde and satellite wind data on the numerical simulation of two landfalling tropical storms during the Tropical Cloud Systems and Processes Experiment. Wea. Forecasting, 23 , 6279.

    • Search Google Scholar
    • Export Citation
  • Pu, Z., X. Li, and E. J. Zipser, 2009: Diagnosis of the initial and forecast errors in the numerical simulation of the rapid intensification of Hurricane Emily (2005). Wea. Forecasting, 24 , 12551270.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2006: The Intensity Forecasting Experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87 , 15231537.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., M. L. Black, S. S. Chen, and R. A. Black, 2007: An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones. Part I: Comparisons with observations. J. Atmos. Sci., 64 , 18111834.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133 , 793813.

  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54 , 16421661.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55 , 835852.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59 , 12391262.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., A. Shapiro, and K. K. Droegemeier, 2002: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part II: Thermodynamic retrieval and numerical prediction. Mon. Wea. Rev., 130 , 454476.

    • Search Google Scholar
    • Export Citation
  • Wu, W-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130 , 29052916.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y-H. Kuo, J. Sun, W-C. Lee, E. Lim, Y-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44 , 768788.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y-H. Kuo, J. Sun, W-C. Lee, D. M. Barker, and E. Lim, 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46 , 1422.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., X. Zhang, C. A. Davis, J. Tuttle, G. J. Holland, and P. J. Fitzpatrick, 2009: Experiments of hurricane initialization with airborne Doppler radar data for the advanced research hurricane WRF (AHW) model. Mon. Wea. Rev., 137 , 27582777.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., and Y. Jin, 2008: High-resolution radar data assimilation for Hurricane Isabel (2003) at landfall. Bull. Amer. Meteor. Soc., 89 , 13551372.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3813 3266 1496
PDF Downloads 294 92 9