Reexamining the Vertical Structure of Tangential Winds in Tropical Cyclones: Observations and Theory

Daniel P. Stern Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Daniel P. Stern in
Current site
Google Scholar
PubMed
Close
and
David S. Nolan Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by David S. Nolan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A few commonly held beliefs regarding the vertical structure of tropical cyclones drawn from prior studies, both observational and theoretical, are examined in this study. One of these beliefs is that the outward slope of the radius of maximum winds (RMW) is a function of the size of the RMW. Another belief is that the outward slope of the RMW is also a function of the intensity of the storm. Specifically, Shea and Gray found that the RMW becomes increasingly vertical with increasing intensity and decreasing radius. The third belief evaluated here is that the RMW is a surface of constant absolute angular momentum M. These three conventional wisdoms of vertical structure are revisited with a dataset of three-dimensional Doppler wind analyses, comprising seven hurricanes on 17 different days. Azimuthal mean tangential winds are calculated for each storm, and the slopes of the RMW and M surfaces are objectively determined. The outward slope of the RMW is shown to increase with radius, which supports prior studies. In contrast to prior results, no relationship is found between the slope of the RMW and intensity. It is shown that the RMW is indeed closely approximated by an M surface for the majority of storms. However, there is a small but systematic tendency for M to decrease upward along the RMW. Utilizing Emanuel’s analytical hurricane model, a new equation is derived for the slope of the RMW in radius–pressure space. This predicts a linear increase of slope with radius and essentially no dependence of slope on intensity. An exactly analogous equation can be derived in log-pressure height coordinates, and a numerical solution yields the same conclusions in geometric height coordinates. These conclusions are further supported by the results of simulations utilizing Emanuel’s simple, time-dependent, axisymmetric hurricane model. As both the model and the analytical theory are governed by the dual constraints of thermal wind balance and slantwise moist neutrality, it is demonstrated that it is these two assumptions that require the slope of the RMW to be a function of its size but not of the intensity of the storm. Finally, it is shown that within the context of Emanuel’s theory, the RMW must very closely approximate an M surface through most of the depth of the vortex.

Corresponding author address: Daniel P. Stern, RSMAS/MPO, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: dstern@rsmas.miami.edu

Abstract

A few commonly held beliefs regarding the vertical structure of tropical cyclones drawn from prior studies, both observational and theoretical, are examined in this study. One of these beliefs is that the outward slope of the radius of maximum winds (RMW) is a function of the size of the RMW. Another belief is that the outward slope of the RMW is also a function of the intensity of the storm. Specifically, Shea and Gray found that the RMW becomes increasingly vertical with increasing intensity and decreasing radius. The third belief evaluated here is that the RMW is a surface of constant absolute angular momentum M. These three conventional wisdoms of vertical structure are revisited with a dataset of three-dimensional Doppler wind analyses, comprising seven hurricanes on 17 different days. Azimuthal mean tangential winds are calculated for each storm, and the slopes of the RMW and M surfaces are objectively determined. The outward slope of the RMW is shown to increase with radius, which supports prior studies. In contrast to prior results, no relationship is found between the slope of the RMW and intensity. It is shown that the RMW is indeed closely approximated by an M surface for the majority of storms. However, there is a small but systematic tendency for M to decrease upward along the RMW. Utilizing Emanuel’s analytical hurricane model, a new equation is derived for the slope of the RMW in radius–pressure space. This predicts a linear increase of slope with radius and essentially no dependence of slope on intensity. An exactly analogous equation can be derived in log-pressure height coordinates, and a numerical solution yields the same conclusions in geometric height coordinates. These conclusions are further supported by the results of simulations utilizing Emanuel’s simple, time-dependent, axisymmetric hurricane model. As both the model and the analytical theory are governed by the dual constraints of thermal wind balance and slantwise moist neutrality, it is demonstrated that it is these two assumptions that require the slope of the RMW to be a function of its size but not of the intensity of the storm. Finally, it is shown that within the context of Emanuel’s theory, the RMW must very closely approximate an M surface through most of the depth of the vortex.

Corresponding author address: Daniel P. Stern, RSMAS/MPO, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: dstern@rsmas.miami.edu

Save
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130 , 15731592.

    • Search Google Scholar
    • Export Citation
  • Camp, J. P., and M. T. Montgomery, 2001: Hurricane maximum intensity: Past and present. Mon. Wea. Rev., 129 , 17041717.

  • Dodge, P., R. W. Burpee, and F. D. Marks Jr., 1999: The kinematic structure of a hurricane with sea level pressure less than 900 mb. Mon. Wea. Rev., 127 , 9871004.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585605.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46 , 34313456.

  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52 , 39603968.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2004: Tropical cyclone energetics and structure. Atmospheric Turbulence and Mesoscale Meteorology, E. Fedorovich, R. Rotunno, and B. Stevens, Eds., Cambridge University Press, 165–191.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., S. J. Lord, S. E. Feuer, and F. D. Marks Jr., 1993: The kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon. Wea. Rev., 121 , 24332451.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., 1997: Evaluation of a fully three-dimensional variational Doppler analysis technique. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 422–423.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., F. D. Marks Jr., and F. Roux, 1995: Comparison of three airborne Doppler sampling techniques with airborne in situ wind observations in Hurricane Gustav (1990). J. Atmos. Oceanic Technol., 12 , 171191.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., J. S. Griffin Jr., P. P. Dodge, and N. F. Griffin, 2004: Automatic Doppler analysis of three-dimensional wind fields in hurricane eyewalls. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 5D.4. [Available online at http://ams.confex.com/ams/pdfpapers/75806.pdf].

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43 , 15591573.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54 , 25192541.

  • Jorgensen, D. P., 1984a: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41 , 12681285.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984b: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41 , 12871311.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006: Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63 , 21942211.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17 , 35553575.

    • Search Google Scholar
    • Export Citation
  • Lee, W-C., B. J-D. Jou, P-L. Chang, and F. D. Marks Jr., 2000: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part III: Evolution and structures of Typhoon Alex (1987). Mon. Wea. Rev., 128 , 39824001.

    • Search Google Scholar
    • Export Citation
  • Mallen, K. J., M. T. Montgomery, and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62 , 408425.

    • Search Google Scholar
    • Export Citation
  • Marks Jr., F. D., and R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44 , 12961317.

    • Search Google Scholar
    • Export Citation
  • Marks Jr., F. D., R. A. Houze Jr., and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49 , 919942.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59 , 29893020.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64 , 33773405.

    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60 , 23492371.

  • Powell, M. D., S. H. Houston, and T. A. Reinhold, 1996: Hurricane Andrew’s landfall in south Florida. Part I: Standardizing measurements for documentation of surface wind fields. Wea. Forecasting, 11 , 304328.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., E. W. Uhlhorn, and J. D. Kepert, 2009: Estimating maximum surface winds from hurricane reconnaissance measurements. Wea. Forecasting, 24 , 868883.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61 , 322.

    • Search Google Scholar
    • Export Citation
  • Roux, F., and N. Viltard, 1995: Structure and evolution of Hurricane Claudette on 7 September 1991 from airborne Doppler radar observations. Part I: Kinematics. Mon. Wea. Rev., 123 , 26112639.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., C. M. Rozoff, J. L. Vigh, B. D. McNoldy, and J. P. Kossin, 2007: On the distribution of subsidence in the hurricane eye. Quart. J. Roy. Meteor. Soc., 133 , 595605.

    • Search Google Scholar
    • Export Citation
  • Shea, D. J., and W. M. Gray, 1973: The hurricane’s inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30 , 15441564.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59 , 12131238.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Gradient balance in tropical cyclones. J. Atmos. Sci., 47 , 265274.

  • Willoughby, H. E., and M. E. Rahn, 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Wea. Rev., 132 , 30333048.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., R. W. R. Darling, and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134 , 11021120.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 577 278 55
PDF Downloads 403 162 21