Homogeneous and Inhomogeneous Mixing in Cumulus Clouds: Dependence on Local Turbulence Structure

Katrin Lehmann Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Katrin Lehmann in
Current site
Google Scholar
PubMed
Close
,
Holger Siebert Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Holger Siebert in
Current site
Google Scholar
PubMed
Close
, and
Raymond A. Shaw Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Raymond A. Shaw in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The helicopter-borne instrument payload known as the Airborne Cloud Turbulence Observation System (ACTOS) was used to study the entrainment and mixing processes in shallow warm cumulus clouds. The characteristics of the mixing process are determined by the Damköhler number, defined as the ratio of the mixing and a thermodynamic reaction time scale. The definition of the reaction time scale is refined by investigating the relationship between the droplet evaporation time and the phase relaxation time. Following arguments of classical turbulence theory, it is concluded that the description of the mixing process through a single Damköhler number is not sufficient and instead the concept of a transition length scale is introduced. The transition length scale separates the inertial subrange into a range of length scales for which mixing between ambient dry and cloudy air is inhomogeneous, and a range for which the mixing is homogeneous. The new concept is tested on the ACTOS dataset. The effect of entrained subsaturated air on the droplet number size distribution is analyzed using mixing diagrams correlating droplet number concentration and droplet size. The data suggest that homogeneous mixing is more likely to occur in the vicinity of the cloud core, whereas inhomogeneous mixing dominates in more diluted cloud regions. Paluch diagrams are used to support this hypothesis. The observations suggest that homogeneous mixing is favored when the transition length scale exceeds approximately 10 cm. Evidence was found that suggests that under certain conditions mixing can lead to enhanced droplet growth such that the largest droplets are found in the most diluted cloud regions.

* Deceased.

+ Additional affiliation: Department of Physics, Michigan Technological University, Houghton, Michigan.

Corresponding author address: Holger Siebert, Leibniz Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany. Email: siebert@tropos.de

Abstract

The helicopter-borne instrument payload known as the Airborne Cloud Turbulence Observation System (ACTOS) was used to study the entrainment and mixing processes in shallow warm cumulus clouds. The characteristics of the mixing process are determined by the Damköhler number, defined as the ratio of the mixing and a thermodynamic reaction time scale. The definition of the reaction time scale is refined by investigating the relationship between the droplet evaporation time and the phase relaxation time. Following arguments of classical turbulence theory, it is concluded that the description of the mixing process through a single Damköhler number is not sufficient and instead the concept of a transition length scale is introduced. The transition length scale separates the inertial subrange into a range of length scales for which mixing between ambient dry and cloudy air is inhomogeneous, and a range for which the mixing is homogeneous. The new concept is tested on the ACTOS dataset. The effect of entrained subsaturated air on the droplet number size distribution is analyzed using mixing diagrams correlating droplet number concentration and droplet size. The data suggest that homogeneous mixing is more likely to occur in the vicinity of the cloud core, whereas inhomogeneous mixing dominates in more diluted cloud regions. Paluch diagrams are used to support this hypothesis. The observations suggest that homogeneous mixing is favored when the transition length scale exceeds approximately 10 cm. Evidence was found that suggests that under certain conditions mixing can lead to enhanced droplet growth such that the largest droplets are found in the most diluted cloud regions.

* Deceased.

+ Additional affiliation: Department of Physics, Michigan Technological University, Houghton, Michigan.

Corresponding author address: Holger Siebert, Leibniz Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany. Email: siebert@tropos.de

Save
  • Andrejczuk, M., W. W. Grabowski, S. P. Malinowski, and P. K. Smolarkiewicz, 2004: Numerical simulation of cloud–clear air interfacial mixing. J. Atmos. Sci., 61 , 17261739.

    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., W. W. Grabowski, S. P. Malinowski, and P. K. Smolarkiewicz, 2006: Numerical simulation of cloud–clear air interfacial mixing: Effects on cloud microphysics. J. Atmos. Sci., 63 , 32043225.

    • Search Google Scholar
    • Export Citation
  • Baker, M., and J. Latham, 1979: The evolution of droplet spectra and the rate of production of embyonic raindrops in small cumulus clouds. J. Atmos. Sci., 36 , 16121615.

    • Search Google Scholar
    • Export Citation
  • Baker, M., R. G. Corbin, and J. Latham, 1980: The influence of entrainment on the evolution of cloud drop spectra: I. A model of inhomogeneous mixing. Quart. J. Roy. Meteor. Soc., 106 , 581598.

    • Search Google Scholar
    • Export Citation
  • Baker, M., R. E. Breidenthal, T. W. Choularton, and J. Latham, 1984: The effects of turbulent mixing in clouds. J. Atmos. Sci., 41 , 299304.

    • Search Google Scholar
    • Export Citation
  • Betts, A., 1982: Saturation point analysis of moist convective overturning. J. Atmos. Sci., 39 , 14841505.

  • Beyer, W. H., Ed. 1991: CRC Standard Mathematical Tables and Formulae. 29th ed. CRC Press, 609 pp.

  • Brenguier, J-L., 1993: Observations of cloud microstructure at the centimeter scale. J. Appl. Meteor., 32 , 783793.

  • Brenguier, J-L., and F. Burnet, 1996: Experimental study of the effect of mixing on droplet spectra. Proc. 12th Int. Conf. on Clouds and Precipitation, Zurich, Switzerland, International Commission on Clouds and Precipitation, 67–70.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J-L., and L. Chaumat, 2001: Droplet spectra broadening in cumulus clouds. Part I: Broadening in adiabatic cores. J. Atmos. Sci., 58 , 628641.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J-L., A. R. Rodi, G. Gordon, and P. Wechsler, 1993: Real-time detection of performance degradation of the forward-scattering spectrometer probe. J. Atmos. Oceanic Technol., 10 , 2733.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J-L., T. Bourrianne, A. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, 1998: Improvements of droplet size distribution measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe). J. Atmos. Oceanic Technol., 15 , 10771090.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J-L., H. Pawlowska, L. Schüller, R. Preusker, J. Fischer, and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57 , 803821.

    • Search Google Scholar
    • Export Citation
  • Broadwell, J. E., and R. E. Breidenthal, 1982: A simple model of mixing and chemical reaction in a turbulent shear layer. J. Fluid Mech., 125 , 397410.

    • Search Google Scholar
    • Export Citation
  • Burnet, F., and J-L. Brenguier, 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64 , 19952011.

    • Search Google Scholar
    • Export Citation
  • Cerni, T., 1983: Determination of the size and concentration of cloud drops with an FSSP. J. Appl. Meteor., 22 , 13461355.

  • Cooper, W. A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46 , 13011311.

    • Search Google Scholar
    • Export Citation
  • Dimotakis, P. E., 2004: Turbulent mixing. Annu. Rev. Fluid Mech., 37 , 329356.

  • Gerber, H., 2006: Entrainment, mixing, and microphysics in RICO cumulus. Extended Abstracts, 12th Conf. on Cloud Physics, Madison, WI, Amer. Meteor. Soc., 14.2A. [Available online at http://ams.confex.com/ams/Madison2006/techprogram/paper_109676.htm].

    • Search Google Scholar
    • Export Citation
  • Gerber, H., B. G. Arends, and A. S. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31 , 235252.

  • Gerber, H., G. Frick, J. Jensen, and J. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteor. Soc. Japan, 86A , 87106.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2006: Indirect impact of atmospheric aerosols in idealized simulations of convective–radiative quasi equilibrium. J. Climate, 19 , 46644682.

    • Search Google Scholar
    • Export Citation
  • Haman, K., 1992: A new thermometric instrument for airborne measurements in clouds. J. Atmos. Oceanic Technol., 9 , 8690.

  • Haman, K., A. Makulski, S. P. Malinowski, and R. Busen, 1997: A new ultrafast thermometer for airborne measurements in clouds. J. Atmos. Oceanic Technol., 14 , 217227.

    • Search Google Scholar
    • Export Citation
  • Harrington, J., G. Feingold, and W. Cotton, 2000: Radiative impacts on the growth of a population of drops within simulated summertime arctic stratus. J. Atmos. Sci., 57 , 766785.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65 , 10031018.

  • Heus, T., G. van Dijk, H. Jonker, and H. Van den Akker, 2008: Mixing in shallow cumulus clouds studied by Lagrangian particle tracking. J. Atmos. Sci., 65 , 25812597.

    • Search Google Scholar
    • Export Citation
  • Jeffery, C. A., 2007: Inhomogeneous mixing, invariance and Damköhler number. J. Geophys. Res., 112 , D24S21. doi:10.1029/2007JD008789.

  • Jensen, J. B., and M. Baker, 1989: A simple model for droplet spectra evolution during turbulent mixing. J. Atmos. Sci., 46 , 28122829.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., P. Austin, M. Baker, and A. Blyth, 1985: Turbulent mixing, spectral evolution, and dynamics in warm cumulus cloud. J. Atmos. Sci., 42 , 173192.

    • Search Google Scholar
    • Export Citation
  • Jonas, P., 1996: Turbulence and cloud microphysics. Atmos. Res., 40 , 283306.

  • Kolmogorov, A. N., 1962: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 13 , 8285.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2000: Drop growth due to high supersaturation caused by isobaric mixing. J. Atmos. Sci., 57 , 16751685.

    • Search Google Scholar
    • Export Citation
  • Krueger, S., C-W. Su, and P. McMurtry, 1997: Modeling entrainment and finescale mixing in cumulus clouds. J. Atmos. Sci., 54 , 26972712.

    • Search Google Scholar
    • Export Citation
  • Krueger, S., P. J. Lehr, and C-W. Su, 2006: How entrainment and mixing scenarios affect droplet spectra in cumulus clouds. Preprints, 12th Conf. on Cloud Physics, Madison, WI, Amer. Meteor. Soc., 9.2. [Available online at ams.confex.com/ams/pdfpapers/113671.pdf].

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., H. T. Ochs III, R. M. Rauber, and L. J. Miller, 2000: Initial precipitation formation in warm Florida cumulus. J. Atmos. Sci., 57 , 37403751.

    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S. G., W. A. Cooper, and A. M. Blyth, 2005: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131 , 195220.

    • Search Google Scholar
    • Export Citation
  • Latham, J., and R. L. Reed, 1977: Laboratory studies of the effects of mixing on the evolution of cloud droplet spectra. Quart. J. Roy. Meteor. Soc., 103 , 297306.

    • Search Google Scholar
    • Export Citation
  • Lehmann, K., H. Siebert, M. Wendisch, and R. A. Shaw, 2007: Evidence for inertial droplet clustering in weakly turbulent clouds. Tellus, 59B , 5765.

    • Search Google Scholar
    • Export Citation
  • Libby, P., and A. Williams, 1994: Turbulent Reacting Flows. Academic Press, 608 pp.

  • Lu, M-L., J. Wang, A. Freedman, H. Jonsson, R. Flagan, R. McClatchey, and J. Seinfeld, 2003: Analysis of humidity halos around trade wind cumulus clouds. J. Atmos. Sci., 60 , 10411059.

    • Search Google Scholar
    • Export Citation
  • MacPherson, J. I., and G. A. Isaac, 1977: Turbulent characteristics of some Canadian cumulus clouds. J. Appl. Meteor., 16 , 8190.

  • Paluch, I. R., 1979: The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36 , 24672478.

  • Pawlowska, H., J. L. Brenguier, and F. Burnet, 2000: Microphysical properties of stratocumulus clouds. Atmos. Res., 55 , 1533.

  • Pinsky, M., and A. Khain, 2004: Collisions of small drops in a turbulent flow. Part II: Effect of flow accelerations. J. Atmos. Sci., 61 , 19261939.

    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and W. A. Cooper, 1988: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci., 45 , 16511664.

  • Raga, G. R., J. B. Jensen, and M. B. Baker, 1990: Characteristics of cumulus band clouds off the coast of Hawaii. J. Atmos. Sci., 47 , 338356.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Microphysics. 3rd ed. Pergamon Press, 293 pp.

  • Schmidt, S., K. Lehmann, and M. Wendisch, 2004: Minimizing instrumental broadening of the drop size distribution with the M-Fast-FSSP. J. Atmos. Oceanic Technol., 21 , 18551867.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., 2003: Particle–turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35 , 183227.

  • Shaw, R. A., A. B. Kostinski, and M. L. Larsen, 2002: Towards quantifying droplet clustering in clouds. Quart. J. Roy. Meteor. Soc., 128 , 10431057.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., M. Wendisch, T. Conrath, U. Teichmann, and J. Heintzenberg, 2003: A new tethered balloon-borne payload for fine-scale observations in the cloudy boundary layer. Bound.-Layer Meteor., 106 , 461482.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., H. Franke, K. Lehmann, R. Maser, E. Saw, D. Schell, R. A. Shaw, and M. Wendisch, 2006a: Probing fine-scale dynamics and microphysics of clouds with helicopter-borne measurements. Bull. Amer. Meteor. Soc., 87 , 17271738.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., K. Lehmann, and M. Wendisch, 2006b: Observations of small-scale turbulence and energy dissipation rates in the cloudy boundary layer. J. Atmos. Sci., 63 , 14511466.

    • Search Google Scholar
    • Export Citation
  • Smith, S. A., and P. Jonas, 1995: Observations of the turbulent fluxes in fields of cumulus clouds. Quart. J. Roy. Meteor. Soc., 121 , 11851208.

    • Search Google Scholar
    • Export Citation
  • Stepanov, A., 1975: Condensational growth of cloud droplets in a turbulized atmosphere. Izv. Akad. Sci. USSR, 11 , 2742.

  • Su, C-W., S. K. Krueger, P. A. McMurtry, and P. H. Austin, 1998: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds. Atmos. Res., 47–48 , 4158.

    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., R. M. Rauber, H. T. Ochs III, and L. J. Miller, 1997: The microphysical structure and evolution of Hawaiian rainband clouds. Part I: Radar observations of rainbands containing high reflectivity cores. J. Atmos. Sci., 54 , 369385.

    • Search Google Scholar
    • Export Citation
  • Taylor, R. G., and M. B. Baker, 1991: Entrainment and detrainment in cumulus clouds. J. Atmos. Sci., 48 , 112121.

  • Telford, J. W., and S. K. Chai, 1980: A new aspect of condensation theory. Pure Appl. Geophys., 118 , 720742.

  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

  • Vaillancourt, P. A., M. K. Yau, P. Bartello, and W. W. Grabowski, 2002: Microscopic approach to cloud droplet growth by condensation. Part II: Turbulence, clustering, and condensational growth. J. Atmos. Sci., 59 , 34213435.

    • Search Google Scholar
    • Export Citation
  • Wang, L-P., O. Ayala, Y. Xue, and W. W. Grabowski, 2006: Comments on “Droplets to drops by turbulent coagulation”. J. Atmos. Sci., 63 , 23972401.

    • Search Google Scholar
    • Export Citation
  • Yum, S. S., and J. G. Hudson, 2005: Adiabatic predictions and observations of cloud droplet spectral broadness. Atmos. Res., 73 , 203223.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1107 341 23
PDF Downloads 854 277 19