Influence of Ice Crystal Aspect Ratio on the Evolution of Ice Size Spectra during Vapor Depositional Growth

Lindsay M. Sheridan Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Lindsay M. Sheridan in
Current site
Google Scholar
PubMed
Close
,
Jerry Y. Harrington Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Jerry Y. Harrington in
Current site
Google Scholar
PubMed
Close
,
Dennis Lamb Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Dennis Lamb in
Current site
Google Scholar
PubMed
Close
, and
Kara Sulia Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Kara Sulia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The relationship among aspect ratio, initial size, and the evolution of the size spectrum is explored for ice crystals growing by vapor deposition. Ice crystal evolution is modeled based on the growth of spheroids, and the ice size spectrum is predicted using a model that is Lagrangian in crystal size and aspect ratio. A dependence of crystal aspect ratio on initial size is discerned: more exaggerated shapes are shown to result when the initial crystals are small, whereas more isometric shapes are found to result from initially large crystals. This result is due to the nature of the vapor gradients in the vicinity of the crystal surface. The more rapid growth of the smaller crystals is shown to produce a period during which the size distribution narrows, followed by a broadening led by the initially smallest crystals. The degree of broadening is shown to depend strongly on the primary habit and hence temperature.

Corresponding author address: Lindsay M. Sheridan, WindLogics, Inc., 201 NW 4th St., Grand Rapids, MN 55744. Email: lsheridan@windlogics.com

Abstract

The relationship among aspect ratio, initial size, and the evolution of the size spectrum is explored for ice crystals growing by vapor deposition. Ice crystal evolution is modeled based on the growth of spheroids, and the ice size spectrum is predicted using a model that is Lagrangian in crystal size and aspect ratio. A dependence of crystal aspect ratio on initial size is discerned: more exaggerated shapes are shown to result when the initial crystals are small, whereas more isometric shapes are found to result from initially large crystals. This result is due to the nature of the vapor gradients in the vicinity of the crystal surface. The more rapid growth of the smaller crystals is shown to produce a period during which the size distribution narrows, followed by a broadening led by the initially smallest crystals. The degree of broadening is shown to depend strongly on the primary habit and hence temperature.

Corresponding author address: Lindsay M. Sheridan, WindLogics, Inc., 201 NW 4th St., Grand Rapids, MN 55744. Email: lsheridan@windlogics.com

Save
  • Brown, P. N., G. D. Byrne, and A. C. Hindmarsh, 1989: VODE: A variable coefficient ODE solver. J. Sci. Stat. Comput., 10 , 1038–1051.

    • Search Google Scholar
    • Export Citation
  • Chen, J-P., 1992: Numerical simulations of the redistribution of atmospheric trace chemicals through cloud processes. Ph.D. thesis, The Pennsylvania State University, 342 pp.

  • Chen, J-P., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51 , 1206–1221.

    • Search Google Scholar
    • Export Citation
  • Chen, J-P., and D. Lamb, 1999: Simulation of cloud microphysical and chemical processes using a multicomponent framework. Part II: Microphysical evolution of a wintertime orographic cloud. J. Atmos. Sci., 56 , 2293–2312.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., 1970: A numerical simulation of precipitation development in supercooled cumuli. Ph.D. thesis, The Pennsylvania State University, 179 pp.

  • Cotton, W. R., 1972: Numerical simulation of precipitation development in supercooled cumuli—Part II. Mon. Wea. Rev., 100 , 764–784.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multi-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51 , 249–280.

  • Fridlind, A. M., A. S. Ackerman, G. McFarquhar, G. Zhang, M. R. Poellot, P. J. DeMott, A. J. Prenni, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J. Geophys. Res., 112 , D24202. doi:10.1029/2007JD008646.

    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56 , 1963–1979.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and B. Mason, 1958: The influence of temperature and supersaturation on the habit of ice crystals grown from the vapor. Proc. Roy. Soc. London, 247A , 440–453.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., M. P. Meyers, R. L. Walko, and W. R. Cotton, 1995: Parameterization of ice crystal conversion processes due to vapor deposition for mesoscale models using double-moment basis functions. Part I: Basic formulation and parcel model results. J. Atmos. Sci., 52 , 4344–4366.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., D. Lamb, and R. Carver, 2009: Parameterization of surface kinetic effects for bulk microphysical models: Influences on simulated cirrus dynamics and structure. J. Geophys. Res., 114 , D06212. doi:10.1029/2008JD011050.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2007: The spectral ice habit prediction system (SHIPS). Part I: Model description and simulation of the vapor deposition process. J. Atmos. Sci., 64 , 2210–2237.

    • Search Google Scholar
    • Export Citation
  • Jayaweera, K., 1971: Calculations of ice crystal growth. J. Atmos. Sci., 28 , 728–736.

  • Jensen, E. J., and Coauthors, 2008: Formation of large (≈ 10 μm) ice crystals near the tropical tropopause. Atmos. Chem. Phys. Discuss., 7 , 6293–6327.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, T., 1961: The growth of snow crystals at low supersaturation. Philos. Mag., 6 , 1363–1370.

  • Koenig, L., 1971: Numerical modeling of ice deposition. J. Atmos. Sci., 28 , 226–237.

  • Lamb, D., and P. V. Hobbs, 1971: Growth rates and habits of ice crystals grown from the vapor phase. J. Atmos. Sci., 28 , 1506–1509.

    • Search Google Scholar
    • Export Citation
  • Lamb, D., and J. Chen, 1995: An expanded parameterization of growth of ice crystals by vapor deposition. Preprints, Conf. on Cloud Physics, Dallas, TX, Amer. Meteor. Soc., 389–392.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., N. C. Johnson, and J. Y. Harrington, 2008: Radiative influences on ice crystal and droplet growth within mixed-phase stratus clouds. J. Geophys. Res., 113 , D09203. doi:10.1029/2007JD009262.

    • Search Google Scholar
    • Export Citation
  • Leighton, H. G., 1980: A comparison of a numerical model and an approximate analytical model of the growth of snowflakes. J. Atmos. Sci., 37 , 1409–1411.

    • Search Google Scholar
    • Export Citation
  • Lin, R-F., D. O. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Kärcher, and X. Liu, 2002: Cirrus Parcel Model Comparison Project. Part I: The critical components to simulate cirrus initiation explicitly. J. Atmos. Sci., 59 , 2305–2329.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and M. P. Langleben, 1954: A theory of snow-crystal habit and growth. J. Meteor., 11 , 104–120.

  • Maxwell, J. C., 1878: Diffusion. Encyclopedia Britannica, 9th ed. 214–221.

  • Mitchell, D. L., 1988: Evolution of snow-size spectra in cyclonic storms. Part I: Snow growth by vapor deposition and aggregation. J. Atmos. Sci., 45 , 3431–3451.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysical parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62 , 1665–1677.

    • Search Google Scholar
    • Export Citation
  • Nakaya, U., 1954: Snow Crystals: Natural and Artificial. Harvard University Press, 510 pp.

  • Nelson, J., and M. Baker, 1996: New theoretical framework for studies of vapor growth and sublimation of small ice crystals in the atmosphere. J. Geophys. Res., 101 , 7033–7047.

    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., 1978: An approximate analytical model of the vapor deposition and aggregation growth of snowflakes. J. Atmos. Sci., 35 , 118–124.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H., and J. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer, 954 pp.

  • Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci., 53 , 497–519.

    • Search Google Scholar
    • Export Citation
  • Sheridan, L. M., 2008: Deposition coefficient, habit, and ventilation influences on cirriform cloud properties. M.S. thesis, Dept. of Meteorology, The Pennsylvania State University, 92 pp. [Available online at http://etda.libraries.psu.edu].

  • Takahashi, T., T. Endoh, G. Wakahama, and N. Fukuta, 1991: Vapor diffusional growth of free-falling snow crystals between −3° and −23°C. J. Meteor. Soc. Japan, 69 , 15–30.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single moment scheme. Atmos. Res., 38 , 29–62.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. J. Hogan, and A. J. Illingworth, 2008: The capacitance of pristine ice crystals and aggregate snowflakes. J. Atmos. Sci., 65 , 206–219.

    • Search Google Scholar
    • Export Citation
  • Wood, S., M. Baker, and D. Calhoun, 2001: New model for the vapor growth of hexagonal ice crystals in the atmosphere. J. Geophys. Res., 106 , 4845–4870.

    • Search Google Scholar
    • Export Citation
  • Wu, T., W. R. Cotton, and W. Y. Y. Cheng, 2000: Radiative effects on the diffusional growth of ice particles in cirrus clouds. J. Atmos. Sci., 57 , 2892–2904.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 300 96 3
PDF Downloads 225 75 3