Dynamics of the Cumulus Cloud Margin: An Observational Study

Yonggang Wang University of Wyoming, Laramie, Wyoming

Search for other papers by Yonggang Wang in
Current site
Google Scholar
PubMed
Close
,
Bart Geerts University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
, and
Jeffrey French University of Wyoming, Laramie, Wyoming

Search for other papers by Jeffrey French in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Aircraft observations of shallow to moderately deep cumulus clouds are analyzed with the purpose of describing the typical horizontal structure of thermodynamic and kinematic parameters near the cumulus margin from the cloud center into the ambient clear air. The cumuli were sampled in a broad range of environments in three regions: the tropical Atlantic Ocean in winter, the Sonoran Desert during the monsoon, and the arid high plains of Wyoming in summer. The composite analysis of 1624 cumulus penetrations shows that the vertical mass flux, temperature, buoyancy, the buoyancy flux, and the turbulent kinetic energy all tend to reach a minimum near the cloud edge. Most of these variables, and also the liquid water content, the droplet concentration, and the mean droplet size, generally decrease in value from within the cumulus toward the cloud edge, slowly at first and rapidly close to the cloud edge. These findings corroborate recent observational and modeling studies and provide further evidence for significant evaporative cooling in laterally entraining and detraining eddies in the cloud margin, a transition zone within ∼200 m (or ∼10% of the cloud diameter) of the cloud edge. This cooling explains the tendency for downward accelerating, buoyantly driven subsidence in the cloud margin.

Corresponding author address: Bart Geerts, Dept. of Atmospheric Sciences, University of Wyoming, Laramie, WY 82071. Email: geerts@uwyo.edu

Abstract

Aircraft observations of shallow to moderately deep cumulus clouds are analyzed with the purpose of describing the typical horizontal structure of thermodynamic and kinematic parameters near the cumulus margin from the cloud center into the ambient clear air. The cumuli were sampled in a broad range of environments in three regions: the tropical Atlantic Ocean in winter, the Sonoran Desert during the monsoon, and the arid high plains of Wyoming in summer. The composite analysis of 1624 cumulus penetrations shows that the vertical mass flux, temperature, buoyancy, the buoyancy flux, and the turbulent kinetic energy all tend to reach a minimum near the cloud edge. Most of these variables, and also the liquid water content, the droplet concentration, and the mean droplet size, generally decrease in value from within the cumulus toward the cloud edge, slowly at first and rapidly close to the cloud edge. These findings corroborate recent observational and modeling studies and provide further evidence for significant evaporative cooling in laterally entraining and detraining eddies in the cloud margin, a transition zone within ∼200 m (or ∼10% of the cloud diameter) of the cloud edge. This cooling explains the tendency for downward accelerating, buoyantly driven subsidence in the cloud margin.

Corresponding author address: Bart Geerts, Dept. of Atmospheric Sciences, University of Wyoming, Laramie, WY 82071. Email: geerts@uwyo.edu

Save
  • Abel, S. J., and B. J. Shipway, 2007: A comparison of cloud-resolving model simulations of trade wind cumulus with aircraft observations taken during RICO. Quart. J. Roy. Meteor. Soc., 133 , 781794.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. W. Fairall, D. W. Thomson, A. B. White, J. B. Snider, and W. H. Schubert, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17 , 8992.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32 , 626641.

  • Brenguier, J., D. Baumgardner, and B. Baker, 1994: A review and discussion of processing algorithms for FSSP concentration measurements. J. Atmos. Oceanic Technol., 11 , 14091414.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59 , 20332056.

    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., K. K. Droegemeier, and A. M. Blyth, 1998: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part III: Parcel analysis. J. Atmos. Sci., 55 , 34403455.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., G. Vali, and S. Haimov, 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63 , 14321450.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and Coauthors, 2008: Cumulus photogrammetric, in-situ and Doppler observations: The CuPIDO 2006 experiment. Bull. Amer. Meteor. Soc., 89 , 5773.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., and P. M. Markowski, 2004: Is buoyancy a relative quantity? Mon. Wea. Rev., 132 , 853863.

  • Frank, W. M., H. Wang, and J. L. McBride, 1996: Rawinsonde budget analyses during the TOGA COARE IOP. J. Atmos. Sci., 53 , 17611780.

  • Geerts, B., Q. Miao, and J. C. Demko, 2008: Pressure perturbations and upslope flow over a heated, isolated mountain. Mon. Wea. Rev., 136 , 42724288.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., B. G. Arends, and A. S. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31 , 235252.

  • Gerber, H., G. Frick, J. B. Jensen, and J. G. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteor. Soc. Japan, 86A , 87106.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1993: Cumulus experiment, fine-scale mixing and buoyancy reversal. Quart. J. Roy. Meteor. Soc., 119 , 935956.

  • Grabowski, W. W., and T. L. Clark, 1993: Cloud-environment interface instability. Part II: Extension to three spatial dimensions. J. Atmos. Sci., 50 , 555573.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65 , 10031018.

  • Heus, T., G. van Dijk, H. J. J. Jonker, and H. E. A. Van den Akker, 2008: Mixing in shallow cumulus clouds studied by Lagrangian particle tracking. J. Atmos. Sci., 65 , 25812597.

    • Search Google Scholar
    • Export Citation
  • Heus, T., C. F. J. Pols, H. J. J. Jonker, H. E. A. Van den Akker, and D. H. Lenschow, 2009: Observational validation of the compensating mass flux through the shell around cumulus clouds. Quart. J. Roy. Meteor. Soc., 135 , 101112.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Hozumi, K., T. Harimaya, and C. Magono, 1982: The size distribution of cumulus clouds as a function of cloud amount. J. Meteor. Soc. Japan, 60 , 691699.

    • Search Google Scholar
    • Export Citation
  • Jonas, P. R., 1990: Observations of cumulus cloud entrainment. Atmos. Res., 25 , 105127.

  • Jonker, H. J. J., T. Heus, and P. P. Sullivan, 2008: A refined view of vertical mass transport by cumulus convection. Geophys. Res. Lett., 35 , L07810. doi:10.1029/2007GL032606.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., C. DeMott, and D. Randall, 2008: Evaluation of the simulated interannual and subseasonal variability in an AMIP-style simulation using the CSU multiscale modeling framework. J. Climate, 21 , 413431.

    • Search Google Scholar
    • Export Citation
  • King, W. D., C. T. Maher, and G. A. Hepburn, 1981: Further performance tests on the CSIRO liquid water probe. J. Appl. Meteor., 20 , 195202.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., C-W. Su, and P. A. McMurtry, 1997: Modeling entrainment and finescale mixing in cumulus clouds. J. Atmos. Sci., 54 , 26972712.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D., E. Miller, and R. Friesen, 1991: A three-aircraft intercomparison of two types of air motion measurement systems. J. Atmos. Oceanic Technol., 8 , 4150.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 33673383.

    • Search Google Scholar
    • Export Citation
  • Lopez, R. E., 1977: The lognormal distribution and cumulus cloud populations. Mon. Wea. Rev., 105 , 865872.

  • Paluch, I. R., 1979: The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36 , 24672478.

  • Paluch, I. R., and C. A. Knight, 1984: Mixing and the evolution of cloud droplet size spectra in a vigorous continental cumulus. J. Atmos. Sci., 41 , 18011815.

    • Search Google Scholar
    • Export Citation
  • Raga, G. B., J. B. Jensen, and M. B. Baker, 1990: Characteristics of cumulus band clouds off the coast of Hawaii. J. Atmos. Sci., 47 , 338356.

    • Search Google Scholar
    • Export Citation
  • Rauber, R., and Coauthors, 2007: Rain in shallow cumulus over the Ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88 , 19121928.

  • Rodts, S. M. A., P. G. Duynkerke, and H. J. J. Jonker, 2003: Size distributions and dynamical properties of shallow cumulus clouds from aircraft observations and satellite data. J. Atmos. Sci., 60 , 18951912.

    • Search Google Scholar
    • Export Citation
  • Sengupta, S. K., R. M. Welch, M. S. Navar, T. A. Berendes, and D. W. Chen, 1990: Cumulus cloud field morphology and spatial patterns derived from high-resolution Landsat imagery. J. Appl. Meteor., 29 , 12451267.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60 , 12011219.

    • Search Google Scholar
    • Export Citation
  • Spyers-Duran, P. A., and D. Baumgardner, 1983: In flight estimation of the time response of airborne temperature sensors. Preprints, Fifth Symp. on Meteorological Observations and Instrumentation, Toronto, ON, Canada, Amer. Meteor. Soc., 352–357.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary-Layer Meteorology. Kluwer Academic Publishers, 670 pp.

  • Wang, Y., and B. Geerts, 2009: Estimating the evaporative cooling bias of an airborne reverse flow thermometer. J. Atmos. Oceanic Technol., 26 , 321.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1955: The water content in cumuliform cloud. Tellus, 7 , 449457.

  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and R. M. Welch, 1986: Cumulus cloud properties derived using Landsat satellite data. J. Climate Appl. Meteor., 25 , 261276.

    • Search Google Scholar
    • Export Citation
  • Yuter, S., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123 , 19411963.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005a: Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport. J. Atmos. Sci., 62 , 12691290.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005b: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62 , 12911310.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 381 164 3
PDF Downloads 211 56 1